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INTRODUCTION

Parrots are gregarious and vocal creatures that
communicate in ways we have yet to understand.
How do parrots perceive the world? By under-
standing some of the unique adaptations of avian
anatomy, we may better understand parrot behav-
jor. This chapter will discuss the sensory capaci-
ties of parrots including vision, hearing, taste,
smell, and touch perceptions.

VISION

The majority of birds rely heavily on visual abili-
ties in their daily activities. Visual acuity 18
enhanced in avian species, approximately two to
eight times higher than in mammals, as the avian
eye is large in relation to the size of the head,
allowing a large image to be projected on the reti-
na.[1-5] Visual acuity is also enhanced because
the retina of diurnal birds has a large number of
cones compared fo humans: for example. the
hawk fovea contains around 300,000 cones/mm?Z,
while the human fovea contains around 147,000
cones/mm=2.[1] In addition, nearly every cone in
the avian eye is represented by an individual axon
traveling to the brain, while the eye of humans
contains six to seven million cones but only one
million axons in the entire optic nerve.[1]

While eyes come in different shapes depending
on the species of bird, parrots have a “flat” eye.
The flat eyeball is characterized by a short axis
that projects a relatively smaller image on the reti-
na, decreasing visual acuity compared to other
species such as birds of prey.[1] The eyeball of
birds is asymmetric, favoring binocular vision.[1]

The sclera of the eye is strengthened by ten to 18
small bones called scleral ossicles.[1-5]

Because the eyeball almost completely fills the
orbit, the eye movements of the bird are generally
fewer than those of mammals.[1] However, birds
can move their heads and necks extensively, and
this compensates for the small eye movements.[1]
Movement of the orbits is independent between
both eyes in parrots, in contrast to mammals.[1]

A feature of the avian eye is that the sphincter
and dilator muscles of the pupil contain mainly
striated fibers, compared to the mammalian coun-
terpart that contains only smooth muscle.[1-5]
Because of this anatomic feature, the pupillary
opening is under voluntary control in parrots.
Rapid dilation and constriction of the pupillary
opening is often observed in aggressive or excit-
ed parrots.[6] While pupillary light reflexes do
oceur in birds, complete decussation of the optic
nerve axons prevents frue consensual pupillary
light reflex.[2, 3] The iris is the colored part of the
eye that contains chromatophores that can create
varying iris colors based on age. gender, and
species of the parrot.[1-3]

Unlike the mammalian counterpart, the avian
retina is devoid of blood vessels, which decreases
scattering of light and shadows.[5] The pecten is
a unique vascular structure found only in the
avian eye in association with the retina. The func-
tion of the pecten is likely to provide nutrition to
the eye, as retinal vessels are lacking.[1. 3, 7]

Parrots often turn their head or body sideways
when presented with a new toy or object. Be-
havioral studies in many birds have shown that
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they prefer the use of a lateral and monocular
field to observe distant objects.[5. 8-12] Based
on monocular data in pigeons, visual resolution is
higher in the lateral ficld than frontal field, thus
explaining this preference.[5, 13]

The lens of the avian eye is softer than that of
mammalian species.[l] Unlike the yellow-tinted
mammalian lens that filters out wavelengths of
light below 400 nm, the clear avian lens transmits
wavelengths below 400 nm.[1] Colored oil
droplets on the ends of the cones provide protec-
tion against the effects of ultraviolet (UV)
light.[5, 14] Birds are able to see UV light below
400 nm due to the combined effects of cone oil
droplets and visual pigments.[4, 5, 15] While
trichromatic color vision in humans is based on
three colors (blue, green, and red), the tetrachro-
matic, or pentachromatic in some avian species,
system of birds includes UV, fluorescent, blue,
green, and red.[4, 16-24] UV perception of par-
rots likely plays an important role in behavior.
Many parrots” feathers reflect UV and studies
have shown that UV reflection of feathers affects
mate choice (see Plates | and 2 in color sec-
tion).[4, 16, 25-29] While some parrots are not
visibly sexually dimorphic to the human eye, UV
reflection from plumage and skin varies between
sexes of some birds.[4] Some types of fruits and
berries, such as kaki, green grapes, and figs,
reflect UV light and ripeness of the food may be
determined by this characteristic.[4, 30] Certain
flower patterns, insects, and urine and feces of
rodents also reflect UV light that can be detected
by birds.[4, 30-32] Additionally, highly UV-
reflective areas within the oral cavity play an
important role in triggering reflexes to feed young
birds that demonstrate their oral cavity to their
parents. Birds may use UV receptors in combina-
tion with color receptors for navigation by detect-
ing sun-based color gradients.[33-35] Fluores-
cence, which occurs when short wavelength light
is absorbed and re-emitted at a longer wave-
length, occurs on parrot feathers and may be an
important avian signaller.[25, 36]

Birds are able to detect a spatial frequency of
around 160 frames/second or hertz (Hz), com-
pared to 50-60 Hz in humans.[37-39] Because
most artificial lights produce noncontinuous light
at a frequency of around 100-120 Hz, a strobo-
scopic effect not detectable to humans results and
may be detrimental to birds.[4, 39-41] In addi-

tion, artificial lights and sunlight passing through
windows do not provide full-spectrum light.
While studies are currently under way to examine
the effects of artificial lights on birds, current rec-
ommendations have been made to provide full-
spectrum light and high frequency sources that
emit continuous light.[37] Suggestions have also
been made to consider light source and presence
of full-spectrum light when performing ethologi-
cal studies.[17, 37, 42, 43] Because video or com-
puter monitors have refresh rates of around 50-95
Hz, welfare issues may arise when performing
video playback experiments in birds.[39, 44-46]

Familiarity with the unique anatomic and phys-
iologic variations of the avian eye compared to
that of mammals is important when assessing
behavior alterations in parrots. Behavior changes,
such as reluctance to fly or step onto an extended
hand, abnormal head posture, inappetence, and
others, can certainly result from ocular abnormal-
ities. In addition, permanent ocular problems,
such as blindness resulting from cataract forma-
tion, are a common occurrence in parrots and can
be managed in such a way as to maintain quality
of life. Provision of full-spectrum lighting, nor-
mal light cycles. and continuous-emitting light
sources should be considered when addressing
behavioral problems in birds.

HEARING

Birds rely on their hearing ability for detecting
predators and prey, orienting in the environment,
and communicating with conspecifics. The songs
and calls produced by birds are among the most
complex auditory signals known,[47] and this
complexity has generated much interest in how
birds hear sounds.[48] In the case of parrots,
many of these vocalizations appear to be learned
through experience,[49] which has led to further
interest in the connections between perception,
learning, and vocal production.

The anatomy of the avian ear presents some
marked contrasts to the more familiar mammalian
ear. These differences include the absence of an
external ear; a single middle ear bone, the col-
umella, in place of the three bones found in mam-
mals; and the much shorter sensory auditory
epithelium in the inner ear. In Budgerigars, for
instance, the sensory surface of the inner ear, the
basilar papilla, is about 34 mm in length (com-
pared to around 30 mm in humans). The columel-
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lar middle ear and the short auditory sensory
epithelium in birds probably both exert limita-
tions on the range of hearing in birds compared to
mammals.[50] Another interesting difference
between birds and mammals is in the organization
of sensory hair cells on the auditory epithelium.
Mammals typically have one row of inner hair
cells and three rows of outer hair cells across the
width of the auditory epithelium, while birds
show more rows of hair cells and considerable
variation in the structure and orientation of these
hair cells.[51] The functional consequence of
these differences remains obscure. But, in striking
contrast to mammalian hair cells, avian hair cells
are known to be capable of regenerating after
damage caused by exposure to excessive noise or
ototoxic drugs.[52. 53] Here the functional conse-
quences are enormous. Birds regain their hearing
when their hair cells regenerate. Many forms of
human deafness are related to defects in or loss
of hair cell function,[54] and thus the discovery of
hair cell regeneration in birds has spurred a
renewed interest in avian ear anatomy.

The anatomical complexity of the bird ear is
not fully understood and has led to much interest
in how well birds are able to detect, discriminate,
and learn complex sounds. We are fortunate to
know a great deal about the hearing in one parrot
species, the Budgerigar, because of its small size
and tractability in the laboratory for behavioral
studies of hearing. Less is known of the hearing
abilities in other parrot species, but what is
known suggests that many abilities of the
Budgerigar are shared across species. The behav-
ioral methods used for studying hearing involve
operant conditioning or training the bird to
respond to a sound—or the change in a sound—
by pecking a switch in order to obtain food.[55]
These methods have been highly successful and
have been used in a wide range of studies exam-
ining how parrots and other birds detect sounds,
discriminate among similar sounds, and classify
sounds into perceptual categories.

One of the most basic measures of hearing
abilities is the audiogram. The audiogram is a plot
of the least detectable amount of sound energy a
bird can hear in the quiet at different frequencies
over its range of hearing. Figure 4.1 shows audio-
grams for three parrots—the Budgerigar, the
Cockatiel, and the Orange-fronted Conure. These
audiograms show that these parrots, like many
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Figure 4.1. Hearing thresholds under quiet
conditions for three species of parrot. Figure
redrawn from Wright et al. (2003).

bird species, hear best at frequencies between
about | and 5 kHz and less well at frequencies
below about 500 Hz and above 10 kHz. The low-
est threshold approaches (0 dB in the Budgerigar,
5 dB in the Cockatiel, and 20 dB in the Orange-
fronted Conure.[56, 57]

In all three species these lowest thresholds in
the quiet occur at frequencies between 2 and 4
kHz. This is also the frequency range in which
most of the acoustic energy is found in their most
common type of vocalizations, the contact
call.[57, 58] Contact calls are probably designed
for distance communication under more noisy
conditions than found in the laboratory. Interest-
ingly, when hearing thresholds are measured in
the presence of a masking noise, Budgerigars,
Cockatiels, and Orange-fronted Conures also
show the best signal-to-noise ratios in this same
frequency region. These signal-to-noise ratios
(called critical ratios) are shown in Figure 4.2.
These critical ratio functions show the level (in
decibels) above the background noise that a
sound must be in order to be heard. Most birds
show a pattern like the Cockatiel; that is, critical
ratios increase monotonically at roughly 3 dB for
every octave increase in frequency. The Budgeri-
gar and Orange-fronted Conure, by contrast,
show a 5-10 dB increase in sensitivity between 2
and 4 kHz relative to the typical avian critical
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Figure 4.2. Hearing thresholds under noisy
conditions for three species of parrot. Thresholds
are given as the critical ratio between signal level
and the masking noise at the threshold of detec-
tion. Figure redrawn from Wright et al. (2003).

ratio function.[56, 57] While the function of this
increased sensitivity in these species is uncertain,
it is intriguing to note that it corresponds well to
the frequency range of maximum energy in their
contact calls and may help in discriminating
among different calls within large noisy flocks.
Birds in general, with the exception of noctur-
nal predators such as the Barn Owl, are not very
good at localizing sound. Because of their small
heads and closely spaced ears, the time difference
or intensity difference between sounds arriving at
the two ears of a bird is negligible. One parrot, the
Budgerigar, has been tested in the laboratory and

minimum audible angles are in the range of

2252 degrees for pure tones and 24 degrees for
broadband sounds such as noises and vocaliza-
tions.[59]

Hearing is much more than the detection or
localization of sounds. In order to communicate,
an animal also must be able to discriminate
among different sounds with potentially very dif-
ferent meanings. The complex temporal and fre-
quency structure of many bird vocalizations has
long prompted suspicions that birds may have
particularly good abilities to detect small differ-
ences in frequency, amplitude, and temporal char-
acteristics of sound. In some cases this prediction

is borne out, while in other areas the abilities of
birds are very similar to those of mammals and
other terrestrial animals. For example, studies of
frequency discrimination in the Budgerigar and
the Orange-fronted Conure have shown that, like
most birds, they are able to discriminate among
tones that differ by about 1% of their frequen-
cy.[57, 60] This threshold is roughly in the range
of humans and other animals that have been test-
ed. In contrast, these parrots are worse than
humans at discriminating differences in the inten-
sity of two tones; humans can discriminate a 1 dB
difference in the intensity of pure tones, while
birds, including Budgerigars and Orange-fronted
Conures, typically require a difference of 2-5
dB.[57, 61] One can imagine that in discriminat-
ing vocalizations in the real world, frequency cues
might be far more reliable than intensity cues due
to degradation of signals during transmission
through the environment, so perhaps this is one
reason that intensity discrimination abilities are
less well developed.

The detection abilities measured using pure
tone stimuli may not be perfect predictors of the
ability of parrots to distinguish among complex
species-specific calls. Several studies have exam-
ined the ability of parrots to discriminate among
and classify their contact calls. One study com-
pared the abilities of Budgerigars and Zebra
Finches to detect the presence of contact calls in
a noisy background, and compared these thresh-
old levels to those found when birds were asked
to discriminate among the same calls in the pres-
ence of noise.[62] Thresholds were 2-5 dB lower
for detection than for discrimination among the
same calls, suggesting that discrimination is a
more difficult task requiring more of the informa-
tion in the calls to be clearly perceived.

A second study compared the ability of Bud-
gerigars, Zebra Finches, and Canaries to discrim-
inate among a set of stimuli including four con-
tact calls from cach species.[63] All three species
had more difficulty discriminating between calls
from the same species than between calls from
different species. Furthermore, all three species
could discriminate more easily between calls
from their own species than between two calls
from a different species. These results suggest
that discrimination is more difficult when calls
are acoustically more similar (i.e., from the same
species) but that different species may have spe-
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cial hearing abilities that aid in the perception of
their own calls. Such specializations may arise
either through innate differences in auditory
capabilities or through learned preferences devel-
oped through selective exposure to conspecific
sounds as nestlings or fledglings.

A third study examined the ability of the
Orange-fronted Conure to form perceptual cate-
gories for different individuals based on the
acoustic properties of their calls (T. Wright, K.
Cortopassi, J. Bradbury. and R. Dooling, unpub-
lished data). Subjects listened to a repeating back-
ground of ten calls from a single individual inter-
spersed with calls from different individuals.
Subjects quickly learned to avoid responding to
the differences between different renditions of the
contact call by a single individual and to respond
to the differences among calls of different indi-
viduals. Their ability to learn this distinction rap-
idly suggests that they are able to form perceptu-
al categories for the calls of different individuals
that allow them to focus on those acoustic fea-
tures that reliably differ between different individ-
uals. Such perceptual abilities may be critical for
acoustic recognition of a variety of social levels in
parrots, including individuals, pairs. flocks,
roosts, and geographic regions.

TASTE AND SMELL

Taste buds lic on the tongue base in most of the
avian species studied such as the chicken, pigeon,
swift, raptor, and songbird.[1. 64, 65] In parrots,
taste buds are found along the choanal opening on
the roof of the oropharynx in association with
salivary glands.[1, 65] Compared to mammals,
birds have a poor sense of taste; while humans
have around 9,000 taste buds, parrots are estimat-
ed to have 300-400.[66, 67] Parrots have a high-
er number of taste buds than most other avian
species, such as the chicken with 250-350 and the
pigeon with only 37-75.[64, 66, 67] Despite the
low number of taste buds found in birds, many
studies have shown that flavors can affect food
choice and quantity consumed.[66, 68-76] While
it has been stated that most birds easily detect
salts and acids but sweet substances are not effec-
tive stimuli, the response to different flavors
varies widely among birds.[1, 76] Some parrots
and Budgerigars, as well as other birds, have been
shown to prefer sugar solutions over water.[67]
Studies in captive Cockatiels examined threshold

and preference for water, sodium chloride, potas-
sium chloride, sucrose. glucose, fructose, sodium
phosphate buffer, and citric acid buffer solu-
tions.[66, 76] In the Cockatiel studies, all tested
compounds added to the water resulted in de-
creased consumption of the test solution and in-
creased consumption of pure water. No test com-
pound was preferred by the Cockatiels.[66, 76]
While future study is needed to determine the sig-
nificance of taste preference in parrots, there is
no question that taste plays a role in food accept-
ance and avoidance.

The receptors of the nasal cavity that detect
odor are generally located on the caudal nasal
conchae.[1] Receptor nerve fibers run from the
conchae olfactory epithelium to an area within
the brain called the olfactory bulb. which is rela-
tively small in the parrot compared to other avian
species.[1] Interestingly, the avian orders with rel-
atively small olfactory bulbs have high olfactory
thresholds.[77, 78] Compared to mammals such
as man, dogs. and rats, birds have proven to have
comparable olfactory capacities in conditioning
studies.[77. 79-83] Although research into
psittacine olfactory abilities is scarce, various
avian species use ol factory cues for food location,
orientation and navigation, returning to nest sites,

reproduction and parenting, and selection of nest
material [81, 84-89]

TOUCH

There are many types of sensory receptors,
including those for touch, heat, and pain, located
within the parrot beak and skin that give the bird
more information about its environment. The dif-
ferent types of touch receptors, or mechanorecep-
tors, in birds are Herbst corpuscles, Merkel cell
receptors, Grandry corpuscles, and Ruffini end-
ings.[90] Herbst corpuscles, which are vibration-
sensitive, are the most numerous skin receptors
and are found in the beak, leg. and skin.[90, 91]
Because they lie in close association with feather
follicles and muscles associated with the follicles,
Herbst corpuscles relay feather position in rela-
tion to the body. Merkel cells are found mainly in
the beak of non-aquatic birds, while Grandry cor-
puscles are present in aquatic birds; both are
numerous in the bill tip organ that is important for
food prehension.[90, 91] While Ruffini’s cor-
puscles can be found in joint capsules of birds,
Ruffini endings have only been identified in
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the bill of geese and the beak of the Japanese
quail.[90, 92-94] Mechanoreceptors are involved
with behavioral responses, including the initiation
of a feeding response in baby birds upon beak
manipulation and the ability of parrots to manip-
ulate food with their beak and feet.[90] The sen-
sitive mechanoreceptors in the feet of parrots may
allow them to feel earthquakes that are unde-
tectable to owners.[90, 95] Disorders of the
plumage may be detected by mechanoreceptors
and stimulate preening behavior.[90, 96] Flight
control and patterns may be regulated by
mechanoreceptors detecting vibrations caused by
air stream turbulence.[90, 97, 98]

Avian thermoreceptors may be free nerve end-
ings and are present in the skin, especially the
beak and tongue.[90, 99] Thermoreceptors in the
skin assist with body thermoregulation and those
in the beak may be used for regulating incubation
temperatures in some birds.[100] Pain receptors,
or nociceptors, respond to mechanical and ther-
mal stimuli and are present in the beak and
skin.[90, 101, 102] Research indicates that birds

respond to pain by either a reflex/escape response
or by immobility; these responses may be mediat-
ed by different types of pain receptors.[103] In
addition, beak amputation studies show that birds
may experience chronic pain.[103]

CONCLUSION

Parrots experience the world in ways both similar
and different to mammals. It is apparent that
vision, hearing and vocalization, taste, olfaction,
and touch perception play vital roles in the daily
life of the parrot. Many of the normal and abnor-
mal behaviors of parrots can be better understood
by examining how birds perceive the environment
around them. Further research in the area of sen-
sory perception of parrots will expand our knowl-
edge and likely enable us to improve the lives of
these magnificent creatures.
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