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Change is fundamental to all social systems. Temporal dynamics are critical in understanding how
relationships form and change over time but rarely are studied explicitly in animal groups. Social
network approaches are useful in describing association patterns and provide promising tools for
investigating the dynamics of change in social structure but have rarely been used to quantify how
animal associations change over time. In this study, we describe and test a framework for temporal
analysis of social structure. We propose an analytical framework of methods that integrates across social
scales and comparatively analyses change in social structure across multiple types of social association.
These methods enable comparisons in groups that differ in size and are flexible to allow application to
weighted and unweighted networks, where ties can be directed or undirected, and relationships can be
symmetric or asymmetric. We apply this analytical framework to temporal social network data from
experimentally formed captive groups of monk parakeets, Myiopsitta monachus, to both evaluate our
analysis methods and characterize the social structure of this species. We compared dynamics of dyadic
network formation, ego network formation and global network stabilization patterns across neutral,
affiliative and agonistic associations. We found that social structure of captive monk parakeets formed
and stabilized over a short period, but patterns differed by social association type. We also found
evidence for consistency in the temporal dynamics of formation and stabilization of social structure
between replicate social groups. Our analysis methods successfully identified change in social structure
that corresponded well with qualitative observations. This framework is likely to be useful in charac-
terizing patterns of temporal dynamics in social structure in longitudinal data in wide variety of social
systems and species.
� 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Change is fundamental to all social systems. Social associations
vary over time as individuals are incorporated into social groups
through birth and immigration and leave through emigration and
death. This process can be somewhat predictable in cases of long-
lived species with stable social groups. In contrast, this process is
less predictable when mortality rates are higher or when individ-
uals alter their groupmembershipmore frequently, as in the case of
species with high fissionefusion dynamics. The importance of an
individual’s social associates can also be context dependent and can
shift with changes in developmental, environmental or social
conditions (Hinde 1976a; Sapolsky 2005). Once formed, relation-
ships among individuals are unlikely to remain static, and the
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consistency or stability of relationships is important to consider
when characterizing social patterns (Hinde 1976a).
Temporal Dynamics of Social Networks

Temporal dynamics are key to understanding how relationships
form and change over time but are rarely studied explicitly in
animal groups (Whitehead 2008; Krause & Ruxton 2010). One
method for analysing social relationships is social network analysis
(Wasserman & Faust 1994; Wey et al. 2007; Croft et al. 2008). Social
network analysis is a flexible, model-free technique applicable to
a wide range of social situations. It provides methods for quanti-
fying relationships and how individuals fit into the social landscape
on a global scale. Although social network analysis provides
promising tools for investigating the dynamics of change in social
structure, it has rarely been used to quantify how animal associa-
tions change over time. Where temporal dynamics of social
by Elsevier Ltd. All rights reserved.
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structure have been studied, the focus has generally been on gross
structural patterns obtained when data are aggregated over long
timescales. For example, social network structure in some groups
changes with season (Hamede et al. 2009; de Silva et al. 2011),
reproductive state (Fischhoff et al. 2007; Sundaresan et al. 2007;
Patriquin et al. 2010), individual attractiveness (Oh & Badyaev 2010)
and resource availability (Henzi et al. 2009; Foster et al. 2012).
Other studies have found evidence for stable social associations
across years (e.g. Silk et al. 2006a; Mitani 2009) and correlations
with individual fitness across years (McDonald 2007; Ryder et al.
2008). Data in these analyses were generally aggregated over
relatively long periods such as months or years. This type of data
aggregation is a snapshot method of comparing static networks to
one another and does not allow for detailed exploration of dynamic
change. Studies of the fine details of network change are much less
common (but see Blonder & Dornhaus 2011).

Methods have been developed to study temporal dynamics in
human social networks to predict patterns of formation of social
ties. Exponential random graph modelling or p* models (reviewed
in: Wasserman & Pattison 1996; Anderson et al. 1999; Robins et al.
2007) can be used to determine the probability of the occurrence of
network ties based on predictor values (Robins et al. 2007).
However, parameters for thesemethods are complex, results can be
difficult to interpret and the models are best used to differentiate
between tie occurrence based on peer influence or self-driven
selection (Borgatti 2010). To quantify and test how patterns of
social associations and structure change over time, methods that
aremore easily interpreted and that can be generalized to a broader
range of study questions are needed (Borgatti 2010). In addition,
most of the development of tools in the social sciences has focused
on dichotomous ties between individuals, where a tie is either
present or absent; much less work has focused on development of
statistical analysis of continuous weighted tie strengths or valued
relations (Robins et al. 1999). There has been a recent push to move
towards use of continuous measures of dyadic association strength
in network studies, especially in nonhuman animals (see Lusseau
et al. 2008; Croft et al. 2011).

Two major aspects of the dynamics of social networks that have
received little attention are (1) analyses of temporal dynamics
across different social scales and (2) comparative analyses of
dynamics across different association types. First, social structure
has generally been examined at a single scale. Representations of
social structure are usually constructed based on characteristics of
dyadic relationships (Wasserman & Faust 1994; Whitehead 2008),
and then analysis focuses on dyadic relationships (Silk et al. 2006a,
b, 2009), individual connections within the network structure
(Stanton et al. 2011), or the group’s global network structure
(Lusseau et al. 2006; Henzi et al. 2009). However, changes in social
structure may be better understood by using a scaled approach that
considers aspects of temporal dynamics across different social
levels. Social networks can be examined at multiple levels to
determine how change occurs over time in dyadic relationships,
how individuals interact within local social structure, and charac-
teristics of the entire network on a global scale. A multiscale
approach could thus provide a more comprehensive perspective on
the drivers and characteristics of temporal dynamics in networks
(Mucha et al. 2010; de Silva et al. 2011).

Second, analyses of temporal dynamics generally focus on
a single type of social association. Associations among individuals
may be affiliative, agonistic or behaviourally neutral. There are few
comparative studies of social structure dynamics across multiple
association types to examine differences in the speed of formation
of different types of social structure. For example, previous studies
on the temporal dynamics of dominance hierarchy formation solely
incorporate information on agonistic associations (Chase 1980;
Chase et al. 2002). Comparisons of temporal dynamics across
multiple association types, or a ‘multiplex’ approach to social
structure analysis (Hinde 1976b; Wasserman & Faust 1994; Hamill
2006; Croft et al. 2008; Mucha et al. 2010), could provide a more
comprehensive and comparative perspective on social change.
Even in groups structured by aggression, mutual dependencies
exist between group members (de Waal 1986). Comparisons across
multiple association types are especially important because an
individual’s connections within a group have been shown to have
important fitness consequences. For example, neutral associations,
through shared groupmembership, can increase foraging efficiency
in vultures (Coragyps atratus and Cathartes aura; Buckley 1996;
Rabenold 1987) and access to other essential resources in Grevy’s
zebra, Equus grevyi (Sundaresan et al. 2007). Affiliative associations
increase reproductive success in wire-tailed manakins, Pipra fili-
cauda (Ryder et al. 2008, 2009), and a mother’s affiliative grooming
network is positively correlated with infant survival in baboons
(Papio cynocephalus; Silk et al. 2009). Agonistic associations, espe-
cially in species with linear dominance hierarchies, are often
correlated with increased access to reproductive opportunities and
the potential to pass rank on to offspring in spotted hyaenas, Cro-
cuta crocuta (Holekamp & Smale 1991; East et al. 2009). In yellow-
bellied marmots,Marmota flaviventris, aggressiveness or bullying is
positively associated with male reproductive success (Wey &
Blumstein 2012). Studies have also documented that changes in
one association type can affect associations in another context. For
example, patterns of social associations at one life stage can affect
future associations, status and reproductive success in male man-
akins (Chiroxiphia linearis: McDonald 2007; Pipra filicauda: Ryder
et al. 2008, 2009).

Despite previous research, large gaps remain in our under-
standing of complex sociality in many taxa (Silk 2007), which
hampers efforts to understand broader patterns in the evolution of
social structure. More detailed understanding of the temporal
dynamics of social structure within and across association types
could help provide insight into the processes driving complex
sociality (Krebs & Davies 1996; Croft et al. 2008).

Analytical Framework

In this study, we describe and evaluate a framework to address
questions about the temporal dynamics of social structure. We
provide methods for quantifying and testing temporal dynamics
that integrate across social scales and compare change in social
structure across multiple association types for a more holistic view
of formation and stabilization patterns over time. This framework is
particularly applicable to studies with short-term temporal data
sets that are difficult to analyse with more traditional time series
analysis methods. We outline analyses in increasing order of social
scale, from the micro social scale of dyadic relationships through
the macro social scale of global network structure. This framework
is built in part on a conceptual model developed by Hinde (1976a)
for studying primate social structure using concepts derived from
human social sciences. Importantly, this model did not specify
analyses that could be used, nor did it explicitly include temporal
dynamics, although Hinde stressed that patterns and stability of
relationships are important characteristics to include (Hinde 1976a,
b). A similar conceptual framework was more recently used to
quantify dynamics of elephant social structure through time at
three social scales (de Silva et al. 2011), but the study focused on
a single association type within a single population and thus lacks
the multiplex approach described here.

We build on previous work to propose a framework that
incorporates analyses that are broadly applicable to comparisons
across multiple association types in a wide range of social systems.
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We preserve Hinde’s (1976a) original goal in providing a flexible
framework that can be used to accommodate studies of diverse
nonhuman species. We expand upon the analyses provided by de
Silva et al. (2011) to provide additional methods to compare
formation and stabilization patterns from a multiplex perspective
that allows for examination of similarities and differences among
the temporal dynamics of different social association types. We
further increase the flexibility of the framework by incorporating
analyses that enable comparisons in groups that differ in size. Our
framework is also flexible in that the analyses can be applied to
both weighted and unweighted networks, where ties can be
directed or undirected, and relationships can be symmetric or
asymmetric. These aspects allow for broad application of the
framework to species with even highly connected dense networks
that are difficult to interpret with binary data, where weighted
measures of tie strength are likely to be more informative of dyadic
relations. This flexibility also allows for the use of directional ties
and asymmetric relations, which are both important in considering
affiliative and agonistic associations. Our aim is to bring this
analytical framework to broader attention and to expand on anal-
yses that can be used to quantify and test patterns of social struc-
ture formation and stabilization across time periods and in
different social associations.

The first step in the analytical framework is to quantify dyadic
association strengths among all individuals at each time period
(Fig. 1a). This step of analysis focuses on dyadic relationships as the
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Figure 1. Schematic of multiscale analytical framework in increasing order of scale from dya
are recorded at each time period, depicted in the figure as Times 1, 2 and 3 for all individu
measured at each time period (a); changes in associations are summarized by fitting linear
characterized, with each individual serving as the focal ego node for their own ego network;
structure are quantified by summarizing individual metrics such as the number of social as
structure is characterized by how each individual interacts with all other individuals within
individuals at each time period. Matrix permutation methods are then used to determine th
strength. Sequential stabilization patterns are assessed by comparing changes in sequential m
are assessed by comparing all correlations across all time periods using correlation networ
periods, where time periods are nodes and line thickness is correlation strength (r). Tempor
types (not pictured).
basis of social structure because social structure is generally con-
structed based on pairwise relationships between individuals
(Hinde 1976a; Wasserman & Faust 1994; Whitehead 2008).
Changes in continuous measures of each dyadic association are
characterized based on the extent with which they fit a linear or
other type of relationship (Fig. 1b; for fitting nonlinear relation-
ships, see de Silva et al. 2011). Departures from the general rela-
tionship trajectory can be used to determine the extent, timing and
magnitude of changes in social associations.

Next, individual or ego network structure is characterized
through quantifying individually based network metrics. Individ-
uals interact within the social structure both locally, through direct
ties with others, and more globally, through indirect ties with
others. Each individual serves as a focal node (ego) and network
metrics are quantified for each individual based on how it associ-
ates with others (Fig. 1c). Ego network measures, such as degree
(the number of social associates) or strength (sum of tie strengths),
allow each individual’s direct ties to be quantified (Wasserman &
Faust 1994; Barthélemy et al. 2005; Whitehead 2008). Summary
network statistics of mean individual ego networkmeasures can be
used to determine group-level patterns and to test for differences in
social structure formation among groups (Fig. 1d).

The final stage in our analysis of temporal dynamics integrates
continuous measures of dyadic association strengths with aspects
of local and global social structure to examine network stabilization
patterns through time (Fig. 1e). We use matrix permutation
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methods to test for the significance and strength of correlations
among time periods (Croft et al. 2008). Matrix permutation
methods are suitable for nonindependent social structure data
(Krackhardt 1988; Croft et al. 2008, 2011) and provide a method for
considering both the strength of association between dyads with
aspects of more global social structure to serve as the basis for
analysis of social stabilization patterns. Matrix methods also allow
for comparison among association types, particularly as they
preserve the dyadic nature of agonistic associations, thereby
allowing comparisonwith types of dyadic relationships that are not
amenable to group-wide hierarchical systems. Matrix methods can
accommodate groups with nonlinear dominance hierarchies, or
those with undefined, missing or intransitive patterns of aggres-
sion, as well as groups with linear hierarchies. In addition, matrix
methods can be applied even in cases where individuals do not
interact with all other individuals and network connectivity is low
because noninteracting dyads receive an association strength of 0,
which would be incorporated into matrix tests. While these matrix
methods can be used to compare groups with the same number of
individuals, groups that differ in size cannot be compared directly
(Croft et al. 2008). Here, we focus on patterns of correlation
strength within groups across time to compare temporal dynamics
between groups directly. We propose methods to analyse both
sequential (correlation between lag 1 sequential time periods;
Fig. 1f) and broader (correlation among all time periods) stabiliza-
tion patterns (Fig. 1g). Sequential stabilization measures can inform
about day-to-day changes in social structure, while broader stabi-
lization measures provide perspective on the amount of total
change that has occurred over entire study periods, and is most
likely to be useful for examining the occurrence of seasonal fluc-
tuations or cycles in social structure stability and the scale and
timing of network dynamics (Hinde 1976a).

Study Objectives

In this study, we have two main goals. First, we describe
a framework for analysis of the temporal dynamics of social
structure across social scales and association types. We use multi-
scale analyses of social associations to examine change across social
scales, from dyadic associations to global network characteristics.
We use a multiplex perspective to compare formation and stabili-
zation patterns across multiple association types to illustrate the
applicability of our analytical methodology and to examine differ-
ences in patterns among association types.

Second, we use this analytical framework to analyse temporal
social network data from the monk parakeet, Myiopsitta monachus,
to evaluate our analysis methods and to increase our understanding
of the social structure in this species. The monk parakeet is a small
parrot native to temperate South America that shows complex
social interactions. Individuals nest colonially in communal nest
structures, display a high degree of dynamic fissionefusion flocking
behaviour, interact with a large diversity of social associates, and
engage in affiliative, agonistic and neutral associations (Martín &
Bucher 1993; Eberhard 1998; E. Hobson, unpublished data). We
expected that patterns of formation and stabilization of social
structure would differ by association type. Based on previous
studies representing such diverse taxa as chickens (Gallus domes-
ticus; Chase 1982) and crayfish (Procambarus clarkii; Herberholz
et al. 2003), we predicted that agonistic associations, or domi-
nance interactions, would form and stabilize more quickly than
would affiliative social structure.

We conduct analyses in increasing order of scale across neutral,
affiliative and agonistic social associations. We begin with analyses
focusing on the formation of dyadic relationships. We then quantify
the formation of local and global network structure from the
perspective of each individual. We combine both dyadic relation-
ship strength and network structure to evaluate global patterns of
network stabilization. We use our results to gain insight into monk
parakeet social structure and to evaluate the utility and generaliz-
ability of the analytical framework.

METHODS

Study Site and Population

This study was conducted with a population of captive monk
parakeets housed at the Florida Field Station of the U.S. Department
of Agriculture, National Wildlife Research Center, Gainesville, FL,
U.S.A., during JuneeAugust 2008. Prior to our study, parakeets were
housed in groups of one to six individuals per cage and were able to
vocally interact with all other individuals; while somewere in visual
contact, direct physical contact between individuals in different
cages was not possible. We randomly selected individuals without
replacement to create two replicate social group treatments: group
1 (N ¼ 21) and group 2 (N ¼ 19). While the replicate experimentally
formed groups represent a novel social situation because the indi-
viduals had never before interacted with each other as a group, not
all dyadic associations among individuals were novel due to prior
housing conditions. Random group assignment resulted in the
formation of mostly novel dyadic associations: only 3% (group 1)
and 6% (group 2) of dyads were composed of birds housed together
during the 8 months preceding the study.

We marked each parakeet with a unique colour combination
applied with nontoxic marker (Sharpie�, Sanford, Newell Rubber-
maid Co., Oak Brook, IL, U.S.A.) to enable identification of individ-
uals at more than a 270� radius. Marks did not appear to affect
social interactions or individual recognition; pairs allopreened each
other within 5 min of being marked (E. Hobson, personal
observation).

We introduced each social group independently into a large
2025 m2 outdoor seminatural flight pen to conduct social experi-
ments. The group not under study remained in their maintenance
cages with visual and acoustic separation from the group in the
flight pen. The flight pen was a fully contained wire-mesh aviary
exposed to natural weather patterns that contained numerous
trees and bushes and three food and water stations. Test groups
were also exposed to the perception of predation pressure. Because
of the large size and complex habitat of the flight pen, individuals
could actively avoid each other if desired (E. Hobson, personal
observation). Each replicate social group occupied the flight pen for
24 days. Because some of our analyses required the same number of
time periods to compare between replicate social groups, and
because sampling effort varied slightly between groups due to
scheduling and weather, we pooled observations into eight 3-day
time periods to enable comparison between groups 1 and 2.
Pooling data on a 3-day scale allowed us to balance our desire to
sample detailed social structure with the need for enough obser-
vations to represent social structure accurately. Observations of
social behaviour were collected by one to four observers in blinds
between 0700 and 1900 hours. Data were entered directly into
Palm devices or narrated onto an audio recorder and then pro-
cessed and stored in a relational database (Access 2003, Microsoft,
Inc.). All activities conducted during this study were approved by
the New Mexico State University Animal Care and Use Committee
(protocol number 2006-027).

Quantification of Association Strength

Observations of three types of associations were collected to
generate social networks for three association types: affiliative,
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agonistic and neutral. Because of our captive situation, we used
a hybrid observation sampling protocol that combined scan
sampling of associations and all-event sampling of interactions
(Whitehead 2008). We used scan survey samples to collect infor-
mation on the location of each individual within the flight pen
(Whitehead 2008) to assign each individual to a flock. We also
recorded data on the identity of each individual’s nearest neigh-
bour and collected directed aggressive interaction data using all-
event sampling procedures during our scan samples. We quanti-
fied neutral, affiliative and agonistic dyadic association strengths
for each of the eight time periods and for both groups to examine
temporal dynamics.

Neutral associations were quantified using the ‘gambit of the
group’ to define associations by group membership (Whitehead
2008), here using data on shared flock membership. This measure
was the broadest definition of association used in the study and
included the most data on the largest variety of social associations
and interactions. We used both spatial and temporal proximity to
determine shared flock membership, where a flock was defined as
all birds found within the same 10 � 10 m quadrat or perching
location during the same scan sample. When cohesive flocks of
individuals spanned multiple quadrats, we assigned location to the
quadrat occupied by the majority of the flock. Data on flock
membership was pooled into 10 min sampling periods, and any
individuals observed in the same flock at any point during
a sampling period were considered associated. We avoided
nonindependence issues (Sundaresan et al. 2009) even with short
sampling periods because individuals were able to change flock
membership quickly; an individual could traverse the length of the
flight pen in less than 10 s (E. Hobson, personal observation).
Neutral association strength was calculated using the simple ratio
index (SRI) in SOCPROG v.2.4 (Whitehead 2009a, b), which is
a symmetric measure of dyadic association strength. This measure
is often used in captive studies such as ours when individual
detection probabilities are not affected by whether individuals are
grouped with others during sampling (Cairns & Schwager 1987;
Ginsberg & Young 1992; Whitehead 2008). To determine whether
neutral associations exhibited nonrandom patterns, we permu-
tated observed association matrices following Manly (1995) and
Bejder et al. (1998) with modifications introduced in Whitehead
(1999) and Whitehead et al. (2005). For this test, P indicates the
proportion of randomly generated associations that were smaller
than the observed associations, with a large P (>0.95) providing
evidence of nonrandom associations (Bejder et al. 1998; Whitehead
2009a). We used SOCPROG to permute associations within
sampling periods with 10 000 permutations and 1000 flips per
permutation. We chose 10 000 permutations because values of P
stabilized with this number of permutations (E. Hobson, unpub-
lished data, following recommendations from Bejder et al. 1998).

Affiliative association strength was quantified using nearest-
neighbour identity, defined by proximity within a flock. Unlike
other species such as primates, monk parakeets generally only
display directed affiliative behaviours, such as allopreening,
towards one primary associate, resulting in a highly disconnected
network (E. Hobson, unpublished data). However, individuals may
have important relationships without physically interacting, and
relationships among individuals that rarely interact may be more
appropriately characterized by defining associations rather than
through directed behavioural interactions (Whitehead 2008).
Consequently, we used nearest-neighbour association data to
quantify affiliative association strengths. Nearest-neighbour iden-
tity is an asymmetric measure of dyadic association strength.
Because the amount of nearest-neighbour data collected varied
between time periods due to weather and differences in observa-
tion effort, we standardized nearest-neighbour count data by the
total number of nearest-neighbour observations in each time
period to return the percentage of total association observations
attributed to each dyad. This method is valid in our circumstances
because we had approximately the same probability of observing
all individuals during all sampling periods due to the captive
conditions.

Agonistic associations were quantified using directed aggressive
interactions between individuals. We recorded aggressive behav-
iours (displacements, threats, bites and chases) using all-event
sampling (Whitehead 2008) and identified the aggressor and
recipient of aggression for each interaction. We used SOCPROG to
quantify dyadic dominance scores for each pair of birds, which
measures the observed proportion of wins corrected for the chance
occurrence of the outcome (de Vries et al. 2006). Dyadic dominance
is an asymmetric measure of dyadic association strength. We used
a measure of dyadic dominance status (Drews 1993) rather than
ranking individuals in a dominance hierarchy. Dominance rank of
individuals in the group could not be directly compared to changes
in neutral and affiliative dyadic relationships because individual
relationships in these two contexts cannot be organized in a similar
ranked manner within the group. We specifically chose to use
dyadic dominance because it quantifies aggressive interactions on
a dyadic scale, which allows direct comparison to patterns of dyadic
relationship strength dynamics in neutral and affiliative contexts.

For each association type, observations were pooled so that
dyadic association strength was quantified for each of the eight
time periods. Patterns of formation and stabilization of association
types were tested between replicate groups 1 and 2 to determine
consistency in the temporal dynamics of social patterns. However,
the data collected for different association types cannot be
considered independent within groups. For example, all affiliatively
and agonistically interacting individuals required close proximity;
individuals had to be categorized as within the same flock to have
the possibility of associating affiliatively or agonistically; thus, all
affiliative and agonistic associations were nested within neutral
association data. Similar nonindependence issues are likely to
occur in comparisons of multiplex associations in other studies,
suggesting that care should be taken before statistically comparing
across association types. In our case, the nonindependence among
within-group data sets precluded statistical comparisons within
groups across different association types. Thus, we focus statistical
tests on comparisons between replicate social groups.

Formation of Dyadic Associations

We used the three continuous measures of neutral, affiliative
and agonistic association strength detailed above to quantify how
dyads associated with one another at each time period (Fig. 1a). We
then determined the extent to which change in the dyadic associ-
ation over time could be described linearly by fitting a regression of
time against association strength for each dyad (Fig. 1b). We eval-
uated each relationship to determine statistical significance, slope,
mean square error (MSE) and residuals. The slope of the line indi-
cates the trajectory of each association over time. For neutral and
affiliative associations, a positive slope indicates a strengthening
association and a negative slope indicates a weakening association.
For agonistic associations, a nonzero slope indicates a relationship
that is becoming more asymmetric over time; positive slopes
indicate that one individual is becoming more dominant over
another and negative slopes indicate situations where one indi-
vidual is becoming more subordinate to another. Dyads with
agonistic associations that have nonzero slopes are expected to
diverge: as A becomes more dominant (positive slope), B should
become more subordinate (negative slope). We quantified the
percentage of dyads with statistically significant association
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trajectory regressions and then calculated the percentage of
significant trajectories that had positive and negative slopes. A
slope near 0 may indicate either a dyadic association that is rela-
tively stable through time, or one that is poorly described with
a linear function. To differentiate between these alternatives, we
examined the mean square error of the regression lines to deter-
mine goodness of fit regardless of the slope of the line. To deter-
mine the time periods when associations differed the most from
the linear relationship, we quantified the average size of residuals
for all dyads at each time period for each association type and
replicate group.

Formation of Ego Network Structure

For analysis of how individuals interact within their local social
structure, we quantified aspects of ego network structure to
compare patterns of formation across affiliative, agonistic and
neutral association types (Fig. 1c). While the dynamics of
weighted measures can be used to examine the formation of ego
network structure, direct comparisons of weighted measures
across multiple association types and groups that differ in size can
be difficult to interpret. To facilitate comparison among associa-
tion types and between groups, we simplified our weighted
measures of dyadic association strength to binary tie scores rep-
resenting the presence or absence of a tie between individuals.
Although recent work has advocated for the use of weighted ties
over binary ties (Lusseau et al. 2008; Croft et al. 2011), there are
some cases where binary data can provide useful information
about basic social structure (Croft et al. 2011). In particular,
weighted tie strengths are likely to be particularly problematic if
the goal is direct comparison of social structure across multiple
association types such as comparisons of affiliative and agonistic
associations. For example, a high score for an affiliative association
indicates a strong preferential association between the two indi-
viduals, but a high score for an agonistic association indicates that
one individual is highly aggressive towards another. Unless the
research question focuses solely on the frequency of social contact
(such as in disease transmission studies; e.g. Hamede et al. 2009),
directly comparing these different association strengths can result
in an illogical comparison that is not biologically meaningful.
Simplifying association strength to binary data allows comparison
of more basic social structures (such as the number of each indi-
vidual’s associates) across multiple association types and facili-
tates standardizing network measures across groups of different
sizes (T. Opsahl, personal communication).

Because our captive study system promoted high rates of asso-
ciation and interaction and resulted in relatively dense social
networks, we focused on degree as our measure of network
centrality. Degree in its most general sense is simply a count of the
total number of social associates for each individual and is
a measure of the extent of an individual’s ego network (Wasserman
& Faust 1994). Binary degree allowed for straightforward compar-
ison of how the number of social associates changed over time.
Other measures of network centrality (e.g. betweenness, closeness)
and network structure (e.g. path length, clustering coefficient,
modularity) could also be quantified and may be useful in other
situations (Wasserman & Faust 1994; Wey et al. 2007; Croft et al.
2008; Whitehead 2008). Here, we focused on degree centrality as
a networkmetric because it was likely to be biologically meaningful
to the individuals and because it facilitated comparison of basic
network features between groups and across association types. We
used the R package tnet v.3.0.5 for all social network metrics
(Opsahl 2009, 2011).

We used binary data from shared flock membership (SRI),
nearest-neighbour identities and aggressive behavioural
interactions to determine whether each individual interacted with
other individuals during each of the eight time periods. For each
association type, individuals received a tie score of ‘1’ (tie present) if
they were observed associating at least once during a time period,
whereas individuals that never associated during that time period
received a tie score of ‘0’ (tie absent). Because observations of
affiliative and agonistic associations and interactions were made
within the same groups and over the same time spans, we are
convinced that the absence of ties is biologically meaningful (Croft
et al. 2011). We analysed unfiltered neutral networks (no ties
excluded) because we were interested in comparing basic struc-
tures across association types. We also filtered neutral networks so
that individuals received a ‘1’ (tie present) if they were observed in
the same flock duringmore than 5% of the sampling periods in each
time period. These filtered neutral networks allowed us to exclude
observations that may reflect misidentifications or very rare asso-
ciations that may not be biologically meaningful. Application of
these criteria also allowed us to compare filtered and unfiltered
networks to examine the effect of data exclusion and evaluate
whether neutral networks were biologically meaningful.

To determine local network formation patterns, we quantified
each individual’s degree as the total number of social associates.
To facilitate comparison between replicate groups 1 and 2, which
differed slightly in the total number of individuals in each group
(N ¼ 21 versus N ¼ 19), we standardized degree measures by
using each individual’s normalized degree, or the proportion of
potential associates with which each individual associated
(Freeman 1979). We summarized group-level ego network
statistics by quantifying the mean normalized degree for each
group during each time period and for each association type
(Fig. 1d). Mean normalized degree is equivalent to network
density, which is the proportion of the observed ties in the
network compared to the total possible ties (Wasserman & Faust
1994). We tested for consistency in formation patterns between
replicate groups with repeated measures ANOVA (using R package
ez v.3.0) to determine whether observed patterns of normalized
degree differed between groups within association types.

To examine neutral association formation in more detail, we
used continuous measures of SRI weighted association strengths.
We quantified normalized degree strength by dividing the sum of
tie strengths for each node by themaximum tie strengthmultiplied
by the maximum number of ties. Similar to normalized degree,
normalized degree strength indicates the proportion of the total
possible nodal degree strength that each node achieves. We
summarized these ego network measures by quantifying group-
level ego network statistics as the mean of ego network measures
across all individuals in each group for each association type at each
time period.

Stabilization of Global Social Structure

To evaluate stabilization patterns of social structure, we con-
structed square matrices for each type of continuous measure of
dyadic association strength. A separate matrix was constructed for
neutral, affiliative and agonistic association types for each group
and for each of the eight time periods. Each matrix contained
association strength measurements quantifying how all individ-
uals interacted with all other individuals during that time period
(Fig. 1e). We used matrix permutation tests to determine the
strength and statistical significance of correlations among these
matrices. This method allows the use of relationship strengths and
incorporates social network structure by testing for global matrix
patterns using all dyadic relationship strengths in a single test.
This method also avoids problems with nonindependence of data
that are inherent to social network approaches (Croft et al. 2008,
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2011). The matrix approach is also appropriate for all three asso-
ciation types, including agonistic associations, as it depends on
the score of aggression between individuals, rather than a group-
level ranking like dominance rank. We used the quadratic
assignment procedure (QAP) correlation test, which is function-
ally equivalent to a Mantel matrix permutation test (Legendre &
Fortin 2010). The QAP correlation test permutes the rows and
columns of the observed matrix and recalculates the matrix-level
correlation, then compares correlations from randomly permuted
matrices to the observed matrix to determine whether observed
correlations are significantly higher than those from the permuted
matrices (Hubert et al. 1981; Krackhardt 1988; Borgatti et al. 2002;
Croft et al. 2011). We conducted QAP correlations with 5000
permutations using the program UCINET v.6.318 (Analytic Tech-
nologies, Harvard, MA, U.S.A.).

To evaluate sequential changes in stability, we calculated
correlation values between matrices of association strength for
adjacent time periods, or lag 1 comparisons, and graphed these
over time (Fig. 1f). We defined stable social structure as two
matrices that were statistically correlated and had high correlation
strength, with higher correlations taken as stronger evidence of
stability between sequential time periods. By this definition,
perfectly stable social structure would occur if two matrices were
correlated with P < 0.05 and r ¼ 1.0. In addition, to assess the
statistical significance of the lag 1 correlation patterns, we ran
a simulation to test the likelihood of patterns of observed lag 1
correlation strengths compared to randomized data matrices. The
simulationwas constructed following amodel-independent test for
short time series (Golinski & Boecklen 2006). This simulation tests
for nonrandom structure in lag 1 correlation strengths by
permuting existing matrices, and it is an exact test, because it
returns all potential combinations of the data.

Changes in network structure between sequential time periods
could be incremental but result in a large amount of total change
when comparing across multiple timescales. To evaluate broader
stability patterns, we constructed networks that displayed corre-
lation strengths among all time periods over the course of the
entire study period (Fig. 1g). To assess consistency in formation
patterns, we compared thematrices of correlation strengths among
all time periods of group 1 against group 2 by association type using
QAP correlation tests run for 5000 permutations.
RESULTS

General Observations

We collected more than 50 000 observations of monk parakeet
associations and interactions over the course of 323 hours of
observer effort. Flock size ranged from 1 to 20 in group 1
(N ¼ 10117) and from 1 to 19 in group 2 (N ¼ 10333). Flocks
Table 1
Slopes of linear regressions of the strengths of dyadic associations over time for neutral,
monk parakeets (as in Fig. 1d)

Group Association type Mean slope�SD % Significan

Trajectorie

Group 1 Neutral 0.026�0.02 32.86
Affiliative <0.001�0.05 9.05
Agonistic 0.021�0.03 8.33

Group 2 Neutral 0.029�0.02 36.84
Affiliative <0.001�0.07 8.19
Agonistic <0.001�0.03 9.36

MSE: mean square error.
* Alpha ¼ 0.05.
composed of all available individuals within groups accounted for
a small percentage of total flock observations (group 1 ¼ 0%; group
2 ¼ 0.5%). Mean � SD flock size was 3.24 � 2.80 for group 1 and
4.24 � 3.92 for group 2. Mean flock size for our captive parakeets
was similar to mean foraging flock size in a feral population (4.8
birds; South & Pruett-Jones 2000) and mean flying flock size in
native populations (2.98 birds; Eberhard 1998).

Although neither group developed a consistently linear domi-
nance hierarchy within time periods (E. Hobson, unpublished data),
it was relatively easy for observers to distinguish top- and bottom-
ranked individuals. These patterns were obvious within the first 2
days of observation for group 1. The two top-ranked individuals
were a pair that had been traditionally housed together and were
both randomly selected for participation in group 1; these indi-
viduals were rarely challenged by others and quickly monopolized
a preferred perching area within the flight pen. Primary associate
preferences in group 1 established quickly and remained
unchanged until near the end of the 24-day study period, when two
pairs suddenly separated, driving social upheaval in the group
during time periods 7 and 8. In group 2, the top-ranked individual
(a male) was also obvious to observers within the first 2 days of
observation. This individual had been separated from a long-term
mate due to random group assignment. During the first 7 days of
observation, up to five females competed aggressively with each
other to bond with this male. Unlike group 1, group 2 was char-
acterized by a longer lag before primary social associate preferences
stabilized during time periods 3 and 4. Once primary associate
preference formed, group 2 did not undergo a social upheaval such
as observed in group 1 and associate preferences remained stable
through the end of the study period for group 2.

Randomization tests of neutral associations provide evidence
that flocking association patterns were nonrandom. Observed
mean association strength, standard deviation of association
strength and the coefficient of variation all differed from expected
values at all time periods and for both replicate groups (P � 0.9999
in all cases).
Formation of Dyadic Associations

Random assignment of individuals into the two replicate groups
resulted in the formation of many novel dyadic associations; 97% of
group 1 and 94% of group 2 dyads were associations between
individuals not housed together within 8 months preceding the
study. While some dyadic associations showed clear patterns of
strengthening or weakening over time, association trajectories
were generally poorly described by regressions of association
strength on time (Table 1). Neutral associations showed the highest
percentage of significant dyad trajectories. Of the dyads with
statistically significant trajectories, almost all were trajectories with
positive slopes, indicating that neutral associations generally
affiliative and agonistic association types within two replicate test groups of captive

t* Mean MSE�SD

s Positive slopes Negative slopes

98.55 1.45 0.009�0.01
36.84 63.16 0.058�0.20
85.71 14.29 0.031�0.02

100.00 0.00 0.009�0.01
57.14 42.86 0.064�0.21
50.00 50.00 0.021�0.01
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strengthened over time. Only one dyad in group 1 had a neutral
association that significantly weakened over time. In contrast,
fewer affiliative and agonistic association trajectories were
described by the regressions. For affiliative associations, group 1
hadmore associations that weakened over time than strengthened.
In contrast, group 2 had more affiliative associations that
strengthened over time than those that weakened.

Association trajectories in all groups and across all association
types generally had very small slope values (Table 1). When we
examined variation of residuals around regression lines, we found
that neutral association trajectories had the lowest average MSE by
group, followed by agonistic associations (Table 1). Of the three
association types, affiliative association trajectories had the highest
average MSE and were least well described by linear relationships.

When we examined residual size for insight into times when
association strength deviated most from the linear relationship, we
found that association trajectories exhibited qualitatively similar
patterns of the timing and extent of residual size (deviation from
the fitted linear relationship; Fig. 2). All three association types
exhibited largest mean residual sizes in time period 1 across both
replicate social groups. Neutral associations consistently showed
the smallest mean residual size for both groups at all time periods,
but affiliative and agonistic mean residual size showed different
patterns between group 1 and group 2, with group 1’s affiliative
association mean residual size increasing at time period 8, corre-
sponding to observed social upheaval and shifts in dyadic associ-
ations at that time.

Formation of Ego Network Structure

Both replicate social groups showed qualitatively similar
patterns in the formation of local social structure (Fig. 3). Individ-
uals had the highest number of neutral social associates,
a moderate number of affiliative associates and the least number of
agonistic associates in all time periods. This resulted in the highest
network connectivity for neutral associations, measured through
shared flock membership, and the lowest connectivity for agonistic
associations, measured through directed aggression (Fig. 4).

Unfiltered neutral association networks were perfectly con-
nected for both groups, with all individuals scoring maximum
normalized degree (1.0), indicating that all individuals were sighted
at least once in the same flockwith all other individuals during each
time period. Because this perfect connectivity could be due to rare
observations of dyadic associations, we filtered our network so that
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Figure 2. Mean residual size for linear fits of monk parakeet dyadic association strength o
depicted in (a) and (b), respectively.
only dyads observed associating in more than 5% of sampling
periods during any one time period were included. Even with this
filtering of associations, mean normalized degree for neutral
associations remained very high with most time periods showing
perfect network connectivity (Supplementary Material, Fig. S1).
Because filtered networks differed little from unfiltered networks,
it is likely that the high connectivity of neutral networks is bio-
logically relevant, rather than an artefact of rare occurrences of
associations. To evaluate patterns of neutral network formation in
more detail, we also considered temporal dynamics in normalized
degree strength using the continuous weighted dyadic association
strengths. We found that degree strength in both groups increased
over time (Fig. 5). This result, in combination with the perfectly
connected binary neutral networks, shows that although the total
numbers of ties did not change, the strength of ego network ties
largely increased over time.

In contrast to the very high (filtered networks) to perfect
(unfiltered networks) connectivity of neutral networks, aggressive
interaction networks and affiliative association networks showed
overall lower connectivity, with individuals interacting with
a subset of all potential associates during each time period.
Aggressive networks were the least connected of the three asso-
ciation types, with the lowest average number of associates for each
time period.

We tested for consistency in social structure formation between
groups 1 and 2 using a repeated measures ANOVA on normalized
degree over time and found mixed results. In all cases, Mauchly’s
test of sphericity indicated that sphericity could not be assumed
(neutral: P < 0.0001; affiliative: P < 0.0001; agonistic: P ¼ 0.0159)
sowe used the GreenhouseeGeisser correction for nonsphericity in
subsequent tests. Unfiltered binary neutral associations were
perfectly connected at all time periods with zero variance and, thus,
there was no difference between groups 1 and 2, showing that
groups did not differ in patterns of neutral association formation. In
contrast, patterns of normalized degree strength for neutral asso-
ciations differed significantly between groups. We found a signifi-
cant relationship with time, group, and group by time (P < 0.0001
in all cases). Degree formation patterns also differed significantly
between groups for both affiliative and agonistic association types.
We found a significant relationship with time (affiliative:
P < 0.0001; agonistic: P < 0.0001), group (affiliative: P < 0.0001;
agonistic: P < 0.001), and group by time (affiliative: P < 0.0001;
agonistic: P < 0.0001). These results indicate that while binary
neutral social structure formed in similar ways for both groups 1
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Figure 3. Network diagrams displaying the change in the presence of ties among individuals (binary network structure) over time. Networks from monk parakeet test groups 1 and
2 are displayed for time periods 1, 4 and 8 of the study period (t1, t4, and t8), showing network change from the beginning, middle and end of the study period for (a) neutral, (b)
affiliative and (c) agonistic behavioural types. Networks were constructed with NetDraw, v.2.089 (Analytic Technologies); node placement was determined by spring embedding
algorithm.
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and 2, formation patterns differed between groups for weighted
measures of neutral social structure and binary measures of affili-
ative and agonistic structures.

Stabilization of Global Social Structure

Sequential stabilization patterns, evaluated through lag 1
correlation strengths between networks, varied widely (range
0.034e0.976; Fig. 6). However, all sequential correlations exhibited
enough similarity in networks to return statistically significant
correlations (P < 0.05) between time periods. Correlation strengths
were lowest across both groups and all association types when
comparing matrix structure from time 1 to time 2, indicating that
the greatest sequential change in social associations occurred
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Figure 4. Patterns of change in ego network structure (as in Fig. 1d). Graphs display mea
between these time periods. When considered across all time
periods, all lag 1 correlations showed similar asymptotic patterns,
as correlation strengths increased over time and then levelled off.
Both affiliative and neutral structures quickly increased to high
correlation strengths, reached higher correlation values than
agonistic structure, and thus displayed stronger evidence for stable
social structure. Affiliative structure showed the most evidence for
stabilization, with almost perfect stability in both groups during the
middle of the study period. Contrary to our prediction, agonistic
structure formed most slowly in each group and had the lowest
correlation strengths between sequential matrices, demonstrating
less evidence for stable social structure. Computer simulation tests
determined the statistical differences between observed lag 1
correlation values and those expected from all combinations of
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Figure 5. Mean normalized degree strength over time for neutral associations in both
monk parakeet test groups. Although patterns were qualitatively similar, groups
differed statistically in formation patterns.

Table 2
Results of a computer simulation test to assess whether observed lag 1 correlation
strengths differed from all possible lag 1 correlations of randomly permuted
matrices

Association type Pearson r (P)

Group 1 Group 2

Neutral 0.776 (<0.001) 0.705 (0.007)
Affiliative 0.880 (0.003) 0.874 (0.015)
Agonistic 0.371 (0.295) 0.551 (0.045)

Significant P values (P < 0.05) are shown in bold.
Evidence of nonrandom structure occurred for each comparison except agonistic
associations in group 1.
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permuted data. Lag 1 correlations showed evidence for nonrandom
structure in both groups for all association types except for group 1
agonistic structure (Table 2).

Broader stabilization patterns were evaluated through corre-
lating all matrices for all time periods over the entire study period.
QAP matrix permutation tests showed that correlations among
almost all time periods were statistically significant but varied in
correlation strength. Correlation networks showed strong correla-
tions and high mean intercorrelation values across association
types after time period 1 or 2, implying that stable social structure
formed relatively quickly and remained stable across multiple time
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Figure 6. Global network stabilization patterns (as in Fig. 1f) displayed as sequential (la
(b) affiliative, (c) agonistic. Lag 1 correlation strengths from quadratic assignment procedu
lag lengths (Fig. 7). Overall, average correlation strength varied
among social association types, with affiliative associations
showing the highest average correlation strength. We found
a significant correlation between the formation patterns of groups
1 and 2 in all cases except for lag 1 neutral association (Table 3).
These results provide evidence for generally consistent patterns for
social structure formation across the two replicate groups.
DISCUSSION

In this study, we described a framework for analysis of the
temporal dynamics of social structure that integrates observations
of social associations across social scales and association types. We
used this analytical framework to visualize, quantify and test social
network formation and stabilization patterns in captive groups of
monk parakeets. Results from quantitative analyses within this
framework corresponded to our qualitative observations of social
structure dynamics. Social structure formed and stabilized over
a short period in captive groups of monk parakeets, but the details
of these temporal patterns differed by social association type. We
found general evidence for consistency in the temporal dynamics of
formation and stabilization of social structure between replicate
social groups. We discuss the generalizability of this framework to
diverse taxa with different underlying social structures across
widely varying timescales, and we evaluate its usefulness in
providing insight into the characterization of the importance of
social structure.
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Figure 7. Global network stabilization patterns (as in Fig. 1g) displayed as corre-
lation strengths among time periods throughout the study. Nodes correspond to
each of the eight time periods; the widths of ties among time periods depict
Pearson correlation strength (r). All correlations among time periods were
statistically significant at P < 0.05 except those depicted by dashed lines. Mean
intercorrelation values for each time period are shown in italics at the bottom of
each diagram.

Table 3
Consistency in formation of social structure between groups for neutral, affiliative
and agonistic association types evaluated using Pearson correlations between group
1 and group 2

Association type Pearson r (P)

Lag 1 All lags

Neutral 0.57 (0.1847) 0.76 (0.0446)
Affiliative 0.76 (0.0457) 0.73 (0.0378)
Agonistic 0.78 (0.0375) 0.84 (0.0208)

Significant P values (P < 0.05) are shown in bold.
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Formation and Stabilization of Social Structure in Monk Parakeets

We found that aspects of monk parakeet social structure could
form and stabilize in a short period. At the dyadic level, most
pairwise associations had small slope values and showed no clear
pattern of strengthening or weakening through time. Analysis of
residual size indicated a relatively good fit with a linear relation-
ship. This implies that even with small slopes, dyadic associations
can be characterized as linear relationships and that those associ-
ations are generally stable on the dyadic scale.

At the individual or ego network scale, we found that monk
parakeet social network formation patterns were qualitatively
consistent across replicate social groups. In both groups, individuals
had the highest number of neutral social associates, a moderate
number of affiliative associates and the least number of agonistic
associates at all time periods. Neutral associations showed consis-
tent formation patterns between groups. Although general patterns
of affiliative and agonistic association formation were qualitatively
consistent between groups, groups differed significantly in forma-
tion patterns for these association types. Differences in degree
through time between groups were most likely due to differences
in how groups interacted during the study period: higher degree
during time period 1 in group 2 for affiliative and agonistic asso-
ciations were probably due to the intense competition among
females vying for one particular male. Group 1 showed a drop in
normalized degree at time period 7 for both affiliative and agonistic
associations, corresponding to observations of pair rupture and
reformation and suggesting that social contacts decreased during
this abrupt shift in social structure.

At the global network scale, we found nonrandom structure in
matrix correlations that provides evidence of stabilization in monk
parakeet social structure. Affiliative, agonistic and neutral associa-
tions all showed evidence of both incremental and broader-scale
stability. For both groups 1 and 2, affiliative structure showed the
strongest evidence for stability, while evidence for stability was
weakest in agonistic associations. Both sequential and broader-
scale analysis methods detected decreased similarity in social
structure during the end of the study period when group 1 asso-
ciations underwent several changes: lag 1 correlation strengths
decreased when comparing time periods 7 and 8, and time 8
showed lower mean correlation strengths. We also found that
patterns of sequential and broader social structure stabilization
were both consistent between replicate social groups in almost all
categories.

While it is possible that established dyadic associations could
cause more rapid stabilization of social structure, established dyads
in our case accounted for a small proportion of the total dyads.
Because matrix permutation methods considered all dyadic asso-
ciation strengths, it is unlikely that the few established associations
were responsible for driving observed stabilization patterns.
Furthermore, the effect of previous associations should be distrib-
uted equally across all three association types. Additionally,
because there were similar proportions of established and novel
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associations in groups 1 and 2, the effect of previous associations
should also equally affect both replicate groups.

Quantification of formation and stabilization patterns of social
structure can provide insight into the relative importance of
different types of social structure. Contrary to predictions, monk
parakeets formed agonistic associations more slowly than affili-
ative or neutral associations and showed weaker evidence for
network stabilization during the study period. Because of nonin-
dependence in our data sets, we were unable to formally test for
statistical differences among association types within replicate
social groups. However, the consistent patterns of formation and
stabilization between replicate social groups suggest that agonistic
associations are the least stable of the association types considered
in this study. The difference in temporal dynamics of different types
of social structures may provide an indication that affiliative asso-
ciations are more important than agonistic associations in monk
parakeets. Individuals may benefit more from affiliative relation-
ships, perhaps through passive food sharing, aid in nest building, or
access to foraging information, than from agonistic relationships. If
benefits of relationships are skewed towards affiliative relation-
ships, it may explainwhy those relationships formed and stabilized
more quickly than agonistic relationships. Further study of infor-
mation sharing and long-term fitness correlates of social network
metrics could provide additional insight into monk parakeet social
structure.

Greater knowledge of monk parakeet social dynamics can also
increase our understanding of how the parakeets respond to social
upheaval events. Monk parakeets naturally encounter situations in
which novel groupsmay form quickly in response to disturbance. In
both the native and nonnative ranges, stochastic weather events
and anthropogenic disturbances such as nest removal and eradi-
cation programmes (Tillman et al. 2004; Pruett-Jones et al. 2005;
Avery et al. 2006; Burger & Gochfeld 2009) can alter social
composition and promote regrouping and formation of novel
groups. Monk parakeets are also successful invasive species that
have established multiple introduced populations, largely stem-
ming from accidental escapes and intentional releases of pet birds
(Russello et al. 2008). Our study conditions simulated several of the
conditions expected during establishment of a novel introduced
population stemming from a group release. Greater understanding
of the short-term formation and stabilization dynamics of social
structure could also provide insight into the social processes that
occur following an introduction event and could be used to provide
indications of how social behaviours impact invasion dynamics and
success.

Evaluation of the Analytical Framework

The multiscale multiplex analytical framework that we utilized
in this study allowed us to quantify and test patterns of social
structure formation and stabilization in captive groups of monk
parakeets. We examined and tested network dynamics on the
dyadic, ego network and global network scales and across neutral,
affiliative and agonistic social association types. Our analysis
methods successfully identified change in social structure; quan-
titative analyses of network dynamics corresponded well with
qualitative observations of social behaviour. Utilizing methods that
considered multiple social scales provided insight into the
dynamics of networks. For example, at the ego network scale and
considering simple network connectivity or the number of social
associates, networks were perfectly connected for neutral associ-
ations while affiliative networks were less connected. In contrast,
neutral associations showed moderate evidence for stability at the
global network scale while affiliative associations showed the most
evidence. Comparing across social scales provides a more holistic
perspective on dynamic network change. In addition, our multiplex
approach of quantifying and testing the dynamics of social struc-
tures in three different social association types also provided
additional insight. Comparison of neutral, affiliative and agonistic
associations showed differences in network formation and stabili-
zation patterns. These differences allowed us to draw inferences to
the potential relative importance of the different association types
to the parakeets and provided insight into factors structuring monk
parakeet sociality.

Our methods are also useful for comparing across groups that
differ in size. Enabling this comparison is crucial to comparative
studies, but few robust methods have been available (Croft et al.
2008). Our framework provides methods to facilitate these
comparisons. At the dyadic level, the focus on dyadic associations
makes differences in group size a minor issue. At the ego network
scale, standardization methods are available for some network
metrics that can enable direct comparisons between differently
sized groups. In many cases, network metrics based on binary data
are easier to normalize than weighted measures (T. Opsahl,
personal communication). In our case, we found that degree was
especially amenable to standardization and interpretation across
differently sized groups. At the global network scale, we utilized
methods to permute networks for each group at each time period.
We could not directly compare matrices of association strengths
between groups because these methods require equally sized
matrices (Croft et al. 2008). Instead, we focused on the resulting
within-group matrix correlation strengths to compare between-
group patterns of network change over time directly.

The analytical framework is also valuable because it can be
utilized for studying the temporal dynamics of social structure in
diverse taxa, across many types of social structures, and at many
different timescales. For example, a similar scaled analysis was used
to study of Asian elephant, Elephas maximus, social dynamics to
determine how social associations changed at the dyadic, ego
network and global network scales across seasons (de Silva et al.
2011). We demonstrate the applicability of this framework for
quantifying and testing patterns of formation and stabilization of
social structure in a very different species, with different basic
social structure, and over a different timescale. The elephant study
utilized data on a seasonal timescale, with data aggregated over
several months. In contrast, our work with the parakeets utilized
data on a much finer timescale, with data pooled into 3-day
aggregations. Our analysis methods are especially applicable to
temporal analyses of data where traditional time series analysis is
not possible because of lack of sufficient longitudinal data points. In
addition, because this analytical framework is largely free of
underlying assumptions about social structure, it can be applied to
diverse taxa with very different association patterns. Our methods
can be utilized across multiple social association types and in
groups with fissionefusion social systems and thosewithout strong
dominance hierarchical structure. Furthermore, our methods are
robust to comparison of temporal dynamics across groups of
different sizes. Our methods also rely heavily on weighted
measures of association strength and can be used with weighted
directed networks where associations are asymmetric. Generally,
the study questions, the type of data and the characteristics of the
study species will drive the choice of specific methods for quanti-
fying and testing temporal dynamics. However, the overall scaled
social analysis framework is broadly generalizable to a wide variety
of species, social structures and timescales.

One drawback to analyses in our framework is that they are
sensitive to situationswhere individuals join and leave social groups.
In particular, the stability analyses and matrix correlation methods
require that all matrices be same size with the same individuals
represented in each. In groups with high membership turnover,
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these methods are likely to be less applicable. Our methods require
either relatively stable group membership or analysis on a short
enough time span that gross group membership is not altered by
emigration, immigration, birth or deaths. In addition, comparisons
can bemade among independent replicate social groups, but require
data to be samples on a similar time span; in our case, this was
accomplished by pooling observation days into eight 3-day bins.

Finally, this analytical framework can determine temporal
changes in social structure, characterize patterns of network
dynamics, quantify network change and test network formation
and stabilization patterns. However, the analyses used in this study
do not address why associations and structures change, nor do they
identify factors that drive changes in sociality. Stochastic actor-
based models can be used to model network dynamics driven by
multiple tendencies or factors and used to predict the creation or
dissolution of ties within networks (Snijders et al. 2010).

Conclusion

Our study methods are likely to be useful in characterizing
patterns of temporal dynamics in social structure in longitudinal
data in a wide variety of social systems and species. Implementa-
tion of these methods for visualizing, quantifying and testing
patterns of change in social networks will increase our under-
standing of how social structure changes over time. Detailed
information on the dynamics of social structure across multiple
association types can also provide insight into the general charac-
terization of social structure and can aid in predicting the costs and
benefits of individual social investment strategies. Increased
understanding of social network dynamics can then allow studies
to move beyond description of patterns to prediction and theories
for explaining the ultimate causes of structural change.
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