
A machine learning approach for classifying and quantifying 
acoustic diversity

Sara C. Keen1,2,3, Karan J. Odom3, Michael S. Webster2,3, Gregory M. Kohn4, Timothy F. 
Wright5, Marcelo Araya-Salas6

1Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 
14850, USA.

2Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14850, USA.

3Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA.

4Department of Psychology, University of North Florida, Jacksonville, FL, 32224, USA.

5Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.

6Sede del Sur, Universidad de Costa Rica, Golfito, 60701, Costa Rica

Abstract

1. Assessing diversity of discretely varying behavior is a classical ethological problem. In 

particular, the challenge of calculating an individuals’ or species’ vocal repertoire size is often 

an important step in ecological and behavioral studies, but a reproducible and broadly applicable 

method for accomplishing this task is not currently available.

2. We offer a generalizable method to automate the calculation and quantification of acoustic 

diversity using an unsupervised random forest framework. We tested our method using natural and 

synthetic datasets of known repertoire sizes that exhibit standardized variation in common acoustic 

features as well as in recording quality. We tested two approaches to estimate acoustic diversity 

using the output from unsupervised random forest analyses: (i) cluster analysis to estimate the 

number of discrete acoustic signals (e.g., repertoire size) and (ii) an estimation of acoustic area in 

acoustic feature space, as a proxy for repertoire size.

3. We find that our unsupervised analyses classify acoustic structure with high accuracy. 

Specifically, both approaches accurately estimate element diversity when repertoire size is small to 

intermediate (5–20 unique elements). However, for larger datasets (20–100 unique elements), we 

find that calculating the size of the area occupied in acoustic space is a more reliable proxy for 

estimating repertoire size.

4. We conclude that our implementation of unsupervised random forest analysis offers a 

generalizable tool that researchers can apply to classify acoustic structure of diverse datasets. 
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Additionally, output from these analyses can be used to compare the distribution and diversity of 

signals in acoustic space, creating opportunities to quantify and compare the amount of acoustic 

variation among individuals, populations, or species in a standardized way. We provide R code and 

examples to aid researchers interested in using these techniques.
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Introduction

Many animals use vocal signals to transmit information and mediate a wide range of social 

behaviors, from resource competition to attracting mates (Payne et al. 1986, Kroodsma 

and Miller 1996, Gerhardt and Huber 2002, Catchpole and Slater 2003, Janik 2009). 

Owing to the ubiquity and ecological importance of acoustic signaling, quantifying and 

comparing animal vocalizations is a major part of animal behavior and communication 

systems research. Data from several studies suggest that signals often fall into distinct 

categories based on their acoustic structure (e.g. birds, Kroodsma 1982; cetaceans, Janik 

2009; primates, Owren et al. 1992). Such categories are often observed at the species level 

when conspecifics use a shared repertoire of distinct acoustic signals that are associated with 

different contexts (Marler 1982, Seyfarth and Cheney 2003). Distinct categories can also 

arise within a signal type, as when an individual uses several signal variants that have the 

same functional role (e.g., the song repertoires of many songbirds comprise multiple song 

types, Catchpole and Slater 2003).

Classifying or quantifying variation in animal signals is fundamental to many questions in 

animal communication. For example, metrics derived from measuring the number of unique 

elements or vocalizations produced by an individual, such as repertoire size or acoustic 

diversity, have been shown to correlate with quality indicators, including territory size, 

cognitive ability, brain morphology, and levels of stress during early stages of development 

(Sewall et al. 2013, Devoogd et al. 1993, Podos et al. 2009). At the population level, 

differences in acoustic signals can facilitate species recognition (e.g., amphibians, Ryan 

1985) and can play an important role in speciation by promoting isolation between 

sympatric groups (e.g., crickets, Mullen et al. 2007; birds, Mason et al. 2017). When 

assessing entire ecosystems, acoustic diversity, or the amount of variation within and 

among populations’ vocal repertoires, can provide a metric to assess ecosystem health or 

demographic aspects of communities (Sueur et al. 2008a, Laiolo et al. 2008, Pijanowski 

et al. 2011). For these reasons, quantifying acoustic diversity is often an important step 

in addressing questions and testing hypotheses regarding the social and ecological factors 

influencing signal function and evolution.

Classifying signals can be difficult or time consuming because acoustic variation across 

environments, individuals, or even different renditions of a signal by the same individual 

can be considerable. Furthermore, not all variation in acoustic structure is discrete. Often, 

acoustic signals do not fall into distinct categories, but rather exhibit continuous variation 
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on multiple axes, and therefore can be difficult to classify (Wadewitz et al. 2015). Within 

behavioral ecology, a common approach for quantifying variation among signals is to 

estimate repertoire size or element diversity. In this study, we consider a repertoire to be 

the complete set of discrete vocalization types, hereafter elements, used by an individual or 

species. Accordingly, as elements are subunits of which repertoires are composed, we define 

element diversity as the number of unique elements a repertoire contains (this differs from 

ecological definition of diversity, which describes both the number and evenness of entities 

in the environment). While it is theoretically possible to count every discrete acoustic 

element in a dataset of vocal elements, for animals with large repertoire sizes it is common 

to subsample a species repertoire and use either accumulation curves or a capture-recapture 

analysis to estimate repertoire size (Wildenthal 1965, Garamzegi et al. 2002, Catchpole 

and Slater 2003, Garamzegi et al. 2005, Kershenbaum et al. 2015, but see Botero et al. 

2008). However, this approach requires first manually classifying elements or vocalizations, 

a process that can be subjective and may become unwieldy for species with large repertoires 

or multispecies studies. In recent years, several techniques have been developed which 

improve upon these methods (e.g., Peshek and Blumstein 2011; Kershenbaum et al. 2015), 

including approaches that use information theory-based approaches to quantify individuality 

of vocal signals (Beecher 1989, Freeberg and Lucas 2012, Linhart et al. 2019). Additionally, 

methods have been developed to help distinguish among more graded element types (e.g., 

Wadewitz et al. 2015). Nevertheless, the general challenge of quantifying repertoire size still 

exists with many of these methods: human-based classification is both time intensive and 

unavoidably subjective, and researchers would benefit from an automated and generalizable 

method that would enable rapid, objective estimation of repertoire size.

In passive acoustic monitoring and quantification of soundscapes, there is an emphasis 

on creating fully automated approaches for classification and measurement of acoustic 

signals. One such approach, acoustic indices, has been used to quantify ecosystem–level to 

individual behavioral variation (Sueur et al. 2014). Such metrics have become increasingly 

important to ecological assessment and monitoring (Gibb et al. 2019), however, they are 

often calculated at scales that are more appropriate to ecosystem or community ecology.

Unlike soundscape analysis, measuring acoustic diversity on the species- or individual-level 

requires quantifying differences between discrete elements. Machine learning offers an 

automated and objective approach for such classification tasks, and is a powerful tool for 

detecting and distinguishing vocal signals (e.g., Acevedo et al. 2009, Briggs et al. 2013, 

Hershey et al. 2017, Stowell et al. 2019). In particular, unsupervised machine learning 

approaches offer several advantages that enhance their value for assessing behavioral 

diversity, namely in that they do not require a labeled training dataset or a priori assumptions 

about the structure of data (Valletta et al. 2017). Unsupervised techniques can also determine 

which acoustic parameters contribute most to classification or splitting data into classes, 

therefore relieving researchers from the need to make potentially subjective choices about 

feature selection (Breiman 2001). Unsupervised analyses have shown high performance in 

the classification of vocal signals to species as compared to other approaches (Keen et 

al. 2014), including in the case of large datasets (Stowell and Plumbley 2014), and there 

appears to be much promise in applying these techniques to evaluate acoustic diversity 
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(Ulloa et al. 2018). However, a widely applicable tool for assessing acoustic diversity at the 

individual, species, or community-level is not readily available.

In this paper, we present and evaluate the use of unsupervised machine learning for 

classifying and quantifying acoustic diversity in animal signals. Specifically, we examine 

two approaches for estimating repertoire size: (1) a clustering method to identify discrete 

numbers of acoustic units and (2) an acoustic area calculation as a proxy for repertoire 

size. Here, acoustic area refers to the amount of space inside the boundary encompassing 

all signals in a dataset within the acoustic feature space We evaluate the accuracy of these 

approaches on multiple datasets with known acoustic structure. Three unique aspects of our 

approach help ensure this method will be highly generalizable to diverse acoustic signals. 

First, we test algorithm performance using both field-recorded and synthesized acoustic 

datasets with known sample sizes and variation, allowing us to evaluate our method under a 

variety of conditions. Second, we incorporate several of the most commonly used acoustic 

parameters for characterizing signal structure. Third, we used test datasets with realistic 

distributions of variation and background noise, making it possible to evaluate the robustness 

of this approach to variable acoustic structures and across a range of recording scenarios. We 

also provide R code for implementing this approach. Our results suggest that this technique 

offers a powerful tool for researchers to quantify a diversity across taxa and communities.

Methods

We estimated acoustic diversity for a collection of natural and synthetic acoustic signals 

using a machine learning approach (random forest) and evaluated the performance of this 

method following the workflow in Fig. 1. This process involved creating sets of synthetic 

acoustic signals with known repertoire sizes and known amounts of structural variation, 

extracting acoustic features from these signals, running unsupervised random forest analyses 

to calculate pairwise distances between signals, and estimating repertoire size using both 

cluster analysis as well as the size of the acoustic feature space (i.e., the range encompassing 

all possible spectrotemporal variation in signals, hereafter referred to as acoustic space). 

We also evaluated the effects of variation in repertoire size and acoustic structure on the 

accuracy of our analyses.

Using a random forest approach was integral to our workflow for several reasons. A 

key advantage of random forest is its ability to determine which feature measurements 

best divide data into distinct categories; therefore, it is possible to use a large number 

of features and allow the algorithm to determine which are most useful for a given 

dataset. Random forest also offers several additional advantages over other machine learning 

techniques: it is robust to collinearity, outliers and unbalanced datasets, is efficient even 

with large and highly multi-dimensional datasets, can be used in both a supervised and 

unsupervised manner, can handle non-monotonic relationships, ignores non-informative 

variables, produces low bias estimates, computes proximity of observations which can be 

used for representing trait spaces, and can be used to identify variables that contribute most 

to finding structure within a dataset (Valletta et al. 2017). For these reasons, combining 

random forest with a large suite of automated acoustic feature measurements holds much 

promise as a generalizable tool for acoustic classification tasks.
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Test datasets

We evaluated the performance of our proposed method using four datasets: annotated field 

recordings of long-billed hermits (Phaethornis longirostris), annotated lab recordings of 

budgerigars (Melopsittacus undulatus), and two collections of synthetic datasets that were 

modeled on natural vocalizations of these two species (see Table 1 for a summary of 

datasets and Fig. 2 for sample spectrograms). This enabled us to assess performance using 

vocal signals collected from live birds that reflect the naturally occurring variation between 

individuals, as well as datasets comprising signals with distinct spectrotemporal properties, 

as the vocalizations used by these species are considerably different from one another (see 

ESM). Another advantage of using vocalizations from long-billed hermits and budgerigars 

was the availability of large datasets of live recordings from numerous individuals of each 

species that were previously labeled by human experts, which provided ground truth with 

which to test our proposed method. The use of 96 synthetic datasets as test cases also 

allowed us to conduct repeated tests of algorithm performance under different conditions 

and to test whether repertoire size can be approximated using acoustic area. Such thorough 

assessment would not be feasible with field or lab recordings, as the process of collecting, 

annotating, and measuring vocal repertoires is prohibitively time consuming. Additionally, 

a primary aim of using a large number of labeled test datasets was to demonstrate that 

our approach can accurately approximate human analysis on diverse datasets, and to allow 

others to minimize time spent on manual analysis in future acoustic studies.

Field recordings of long-billed hermits were collected from 43 known individuals in wild 

populations at La Selva Biological Station, Costa Rica (10°, 25’ N; 84°, 00’ W), between 

2008 and 2017. Males in this species live in territorial leks that exhibit local songs that are 

shared by sub groups of individuals (i.e., singing neighborhoods) within a lek (Araya-Salas 

and Wright 2013; see ESM for further details). For this study, we used songs recorded 

from 16 leks (mean ± SE songs per group = 3.1 ± 0.51). Because the song types used by 

long-billed hermits change over time, it was possible to use songs recorded from the same 

lek in different years to compile a sample of 50 unique song types. We visually assessed 

spectrograms of all signals to verify that song types exhibited distinct spectro-temporal 

structures. To create the test dataset for this study, we identified the 50 song types had the 

most samples, and selected the 10 recordings with the highest signal-to-noise ratio for each 

type, yielding a dataset of 500 signals.

Laboratory recordings of budgerigar contact calls were collected between July and 

November 2010 from a laboratory population originally acquired from a captive breeder. 

Individual budgerigars typically have repertoires of 2–5 acoustically distinct contact call 

types that are shared with some other individuals within their flock. Contact calls were 

recorded from 38 different individuals that were temporarily isolated from their flock mates 

in a homemade acoustic chamber constructed of an Igloo cooler lined with acoustic foam 

with a clear plexiglass door as described in Dahlin et al. (2014). Trained research assistants 

visually assessed spectrograms made from wav files and assigned calls to classes using 

Raven 1.3 (Cornell Lab of Ornithology). Call classification was subsequently verified using 

a discriminant function analysis as described in Dahlin et al. (2014). We then randomly 
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selected 35 contact calls from each of 15 unique call types, resulting in a dataset of 525 

signals.

Synthetic data creation

To create the synthesized song datasets used for testing, we first extracted the dominant 

frequency contours, defined as the curves that track changes in the dominant frequency of 

signal over time, of the natural bird vocalizations (long-billed hermit songs and budgerigar 

calls). We then synthesized frequency contours similar to those of the exemplar species 

and saved these signals as audio clips using the R soundgen package (Anikin 2019). We 

allowed the synthetic sounds to vary in three features: duration (short: 150 ms; long: 300 

ms; defined as the length of the continuous tonal signal within the spectrogram), harmonic 

content (low and high; defined as the amount of power in harmonic bands above the 

fundamental frequency) and background noise (low: 20 dB signal-to-noise ratio; high: 2 dB 

signal-to-noise ratio). To test the ability of our method to estimate repertoire size and to 

determine whether this can be approximated by calculating the area occupied in acoustic 

space, we synthesized datasets with repertoire sizes of 5, 10, 15, 20, 50, or 100 unique 

elements. Each element type was represented by 10 examples. For each repertoire size, 

we used all possible combinations of duration, harmonic content, and background noise, 

resulting in 48 synthetic datasets for both long-billed hermit songs and budgerigar calls 

(Table 1). Sample spectrograms of signals from each dataset are shown in Fig. 2. See ESM 

for further details of data collection and synthesis.

Acoustic feature measurements

We collected a suite of common acoustic feature measurements from each audio clip. We 

first applied a 500 Hz high pass filter to all audio clips to remove low frequency noise, and 

then created spectrograms for each sample clip using 300-point FFT with a Hann window 

and 90% overlap. From these spectrograms, we extracted 179 descriptive statistics of mel 

frequency cepstral coefficients (MFCCs; Lyon and Ordubadi 1982, sensu Salamon et al. 

2014) and 28 acoustic parameters using the R packages warbler and seewave (Araya-Salas 

and Smith-Vidaurre 2017, Sueur et al. 2008b). All features we used are commonly used 

metrics in bioacoustics analyses and are described in further detail in the ESM. We also 

calculated two pairwise distance matrices for every dataset: one using spectrogram cross-

correlation (Clark et al. 1987) and one using dynamic time warping (Wolberg 1990). We 

used classical multi-dimensional scaling (MDS) to translate the SPCC and DTW distance 

matrices into five-dimensional space, and used the axis coordinates for each sample as 

additional feature measurements (i.e., five SPCC MDS coordinates and five DTW MDS 

coordinates per sample). Together, this resulted in a vector of 217 feature measurements 

for each signal. We collated the feature vectors for each audio clip into a single matrix for 

each dataset, then removed any collinear measurements, applied a Box-Cox transformation 

to improve normality, and scaled and centered all feature values. The resulting matrix was 

used as the input into the supervised and unsupervised random forest models.

Supervised random forest analyses

To evaluate the ability of random forest to classify signals into the correct categories, we 

used a supervised random forest created with the randomForest R package (Liaw and Weiner 
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2002), to classify the signals in each data. Here, “supervised” denotes that the random 

forest model was created using a labeled dataset; in our study, field and lab recordings 

were labeled by human experts and synthetic data were labeled by software. We assessed 

how well the supervised random forest models were able to classify signals from the 

same category together using the out-of-bag error estimate (Breiman 2001), which is an 

unbiased means of assessing prediction performance (Ljumovic and Klar 2015). These 

analyses served as a proof of concept, as they confirmed that models constructed from the 

selected acoustic features could accurately assess similarity amongst signals and allowed us 

to evaluate the distribution of error rates for the test datasets described in Table 1. We expect 

that researchers using this method will have unlabeled data and therefore will only apply 

unsupervised random forest models.

Unsupervised random forest analyses

To determine whether our method can be used to estimate repertoire size or acoustic 

diversity for unlabeled data, we created an unsupervised random forest model for each 

dataset listed in Table 1 using the randomForest R package (Liaw and Weiner 2002). Unlike 

the supervised random forest approach, an unsupervised random forest can be used to find 

underlying structure within unlabeled data (Breiman 2001). This approach also produces 

dissimilarity measure between all samples, which can be used to identify groupings within 

data. Although all test datasets were labeled and repertoire sizes were known, in this step 

we ignored this information in order to simulate the workflow that other researchers might 

use for their data. For each dataset, we constructed an unsupervised random forest model 

using 10,000 decision trees that were built using the unlabeled feature measurements. We 

then used the output of each unsupervised model to obtain pairwise distances between all 

samples within each dataset.

Performance evaluation

We used several metrics to evaluate how well our method could assign samples into 

different classes. First, we assessed performance of each supervised random forest model by 

calculating out-of-bag error rates, which provided a misclassification rate for each dataset. 

Using these values, we examined whether duration of audio clips (long vs. short), harmonic 

content (high vs. low), level of background noise (high vs. low), or number of discrete 

elements influenced the ability of models to assign signals to the correct class.

We evaluated how well the unsupervised random forest could measure acoustic diversity 

using two approaches: by estimating number of unique elements (i.e., repertoire size) in 

each dataset and by calculating the area of the acoustic space occupied by all signals in a 

dataset. To estimate repertoire size, we applied partitioning around medoids (a variation of 

k-means clustering; Kaufman and Rousseeuw 2009) to the pairwise distance matrix returned 

by the unsupervised random forests for each dataset. For each dataset, we calculated 

silhouette width to determine the optimal number of clusters (see Fig. S4). Using the labels 

that were omitted during the design of the unsupervised models, we then calculated the 

difference between the optimal number of clusters (i.e., the estimated repertoire size) and 

the true repertoire size. We also calculated the classification accuracy by assigning each 

cluster in a dataset a label corresponding to the signal type that was most frequently placed 
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in that cluster, and then dividing the total number of correctly assigned samples by the 

number of samples in the dataset. Additionally, we calculated the adjusted Rand index, 

which is a metric of how often samples of the same type are assigned to the same cluster 

and different types assigned to different clusters (Rand 1971). This value represents the 

similarity of datapoints within each cluster and can range between 0, indicating completely 

random classification, to 1, indicating that assigned classes perfectly match labels.

To create the acoustic space for each dataset, we used multidimensional scaling to 

transform the pairwise distance matrix produced by the unsupervised random forest. We 

then calculated acoustic area as the 95% minimum convex polygon (i.e., excluding the 

proportion of outliers above 95%) of these points. We used Spearman’s rank correlation to 

test whether acoustic area increased with true repertoire size.

Lastly, in order to visualize how well the unsupervised analyses clustered distinct 

signal types, we used t-distributed stochastic neighbor embedding (t-SNE) dimensionality 

reduction to display all samples in two dimensions (Maaten and Hinton 2008). All statistical 

analyses were conducted using the R packages cluster, tsne, MASS, and adehabitatHR 

(Maechler et al. 2019, Donaldson 2016, Venables and Ripley 2002, Calenge 2006). See ESM 

for further details of analyses.

Results

Supervised random forest performance

Out-of-bag error was below what would be expected by chance (see ESM) for all supervised 

random forest models: field recordings of long-billed hermits: 0.04, lab recordings of 

budgerigars: 0.093; synthetic long-billed hermit datasets (mean ± SE): 0.02 ± 0.043; 

synthetic budgerigar datasets: 0.049 ± 0.017. However, we observed that certain signal 

characteristics in our synthetic calls sets influenced error rates. Namely, synthetic long 

billed hermit songs that have low harmonic content or high background noise have higher 

out-of-bag error rates, and typically error rates were higher in long billed hermits than in 

budgerigars. Synthetic datasets with higher numbers of discrete element types also had 

higher out-out bag error rates (Fig. 3). Variable importance rankings indicating which 

feature measurements were most useful in splitting data into distinct classes were different 

for each of the four dataset types used for testing (Table S1).

Unsupervised random forest performance and calculating acoustic diversity

We observed that our estimates of repertoire size were most accurate for synthetic datasets 

that contained 20 or fewer unique elements (Fig. 4a). Classification accuracy was often 

above 90% for datasets with five unique elements, and decreased as the true number of 

discrete elements in a dataset increased, reaching around 60% for datasets with 100 unique 

elements (Fig. 4b). Similarly, adjusted Rand indices were relatively high for synthetic 

datasets with small numbers of unique elements, and decreased among datasets as the 

number of unique elements increased (Fig. 4c). An exception to this pattern was the 

synthetic budgerigar datasets with five unique elements, which had lower adjusted Rand 

indices because data were often clustered into fewer than five classes. The scatter plots in 
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Fig. 5a–d illustrate the ability of the unsupervised analysis to cluster synthetic signals of the 

same class together.

When analyzing the live budgerigar calls, our approach correctly estimated that there were 

15 unique signal types in the dataset. However, all calls of the same element type were 

not always assigned to the same cluster (Fig. 4c), which is reflected by the classification 

accuracy of 79.6 % and adjusted Rand index of 0.615. The unsupervised analysis of field-

recorded long-billed hermit songs incorrectly estimated 75 unique signal types in the dataset, 

which was the maximum allowed number of clusters during our testing, rather than the true 

number of 50 unique signal types. However, the classification accuracy for this dataset was 

76.4 %, and the adjusted Rand index was 0.73, indicating that signals of the same class 

were often clustered together. Scatter plots showing the unsupervised clustering of live bird 

datasets are shown in Fig. 5e, f.

When acoustic area as used to estimate repertoire size, we observed a significant, positive 

correlation between acoustic area and the number of discrete elements. In addition, the 

acoustic area metric estimated repertoire size with similar accuracy across all values of true 

repertoire size (Fig. 6). We observed this same pattern for synthetic datasets of long-billed 

hermit songs and budgerigar calls (Spearman correlation: budgerigars: r = 0.91, N = 99, p < 

0.0001, long-billed hermits: r = 0.95, N = 99, p < 0.0001; Fig. 6).

Discussion

Our goal was to provide researchers with a flexible, unsupervised method for quantifying 

diversity in acoustic signals, a general problem encountered when evaluating the vocal 

repertoires of individuals, populations, or species. We aimed to replicate the process 

researchers might use when assessing variation in unlabeled data and tested our method 

on 98 datasets containing between five and 100 unique elements. We find that unsupervised 

learning paired with either cluster analyses or acoustic area calculations can approximate 

small and intermediate sample sizes well. In datasets with many discrete elements, 

however, quantifying the size of the area occupied in acoustic space may offer a more 

accurate alternative to estimating repertoire size than cluster analyses. Below, we make 

specific recommendations about which signal characteristics might influence the accuracy 

of estimating acoustic diversity under different conditions, repertoire sizes, and acoustic 

features.

Supervised analyses

Supervised analyses allowed us to verify that random forests can accurately identify 

underlying patterns in acoustic data and to confirm that our test data had the expected 

structure. Our results suggest that signal duration (short vs. long) and harmonic content (low 

vs. high) largely do not affect classification accuracy in most cases (Fig. 3). Interestingly, 

synthetic long-billed hermit songs that have low harmonic content or high background 

noise suffered from higher out-of-bag error. Additionally, in almost all cases, synthetic 

long-billed hermit songs exhibited higher out-of-bag error rates than synthetic budgerigar 

songs. A likely explanation is that the harmonic content of natural long-billed hermit songs 

provides acoustic structure that aids in classification among element types, and low power 
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content in harmonic bands of our synthetic songs or high background noise may mask this 

helpful feature. Harmonic structure is known to help conspecifics discern fine differences in 

signals and has been shown to encode individual identity in some species (e.g., penguins, 

Aubin et al. 2000; humans, Imperl et al. 1997). As for the higher classification error for 

hermit elements in general, it is possible that the feature measurements we used might not 

be as effective at identifying the spectrotemporal variation for this species compared to 

budgerigars. Hence, it is likely that our simulation underestimated the overall discriminatory 

power of the methods. For synthetic data, we observed that error rates increased with true 

repertoire size, suggesting that the method is less effective at finding structure in data when 

there are large numbers of discrete elements. This decrease in discriminatory power with 

increasing repertoire size might be due to a saturation of the acoustic space.

Unsupervised estimation of repertoire size

Cluster analysis using output from unsupervised random forest models showed that it was 

possible to estimate the true number of discrete elements in synthetic datasets with little 

error when the number of discrete elements was equal to or less than 20 (Fig. 4a). For 

datasets with 50 or 100 discrete elements, unsupervised clustering often estimated repertoire 

size as being much higher than its true value. One possible reason for this may be overfitting 

during clustering, i.e., when subsets of samples of the same signal type are assigned 

to separate clusters, which can occur when there is high similarity among a subset of 

samples in a class. Additionally, higher inaccuracy is expected as more unique elements are 

introduced when the acoustic space becomes saturated. Classification accuracy and adjusted 

Rand indices were also higher for datasets with few discrete elements, and both metrics were 

consistently slightly higher for synthetic long-billed hermit datasets relative to synthetic 

budgerigar datasets (Fig. 4b, d). This might be explained by the fact that the synthetic 

long-billed hermit exhibit more pronounced differences between classes than the synthetic 

budgerigar calls, which might allow for classes to be more easily distinguished. One possible 

explanation for this is that the long-billed hermit recordings from which synthetic signals 

were created contained diverse songs from many different leks, producing more distinct 

signals than the lab population of budgerigars.

For the field and lab recorded datasets, we also observed limitations of the clustering 

method. Although cluster analysis accurately estimated small repertoire sizes for the 

synthetic data, for the lab-recorded budgerigar dataset, which included only 15 unique 

element types, signals of the same class were sometimes placed in separate clusters. This 

could be one shortcoming of using clustering, as the algorithm may not assign the correct 

labels to every signal in a dataset, although we observed that classification accuracy was 

rather high overall (80%). For the field-recorded long-billed hermit dataset with 50 unique 

elements, the unsupervised analysis overestimated the repertoire size to be 75, likely due 

to overfitting as described above. However, we note that this analysis aimed to distinguish 

among signals from the same functional category, as opposed to signals from different 

functional categories across an entire repertoire (e.g. songs, alarm calls, etc.). Clustering 

similar song types is expected to be the more difficult task given the high acoustic similarity 

within a functional category.
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Unsupervised calculation of acoustic space occupancy

Our second approach of quantifying acoustic diversity by calculating the size of the 

acoustic area occupied in acoustic space avoids the issue of needing to assign signals to 

discrete classes. For both synthetic budgerigar and long-billed hermit datasets, acoustic 

area was positively correlated with the number of discrete elements in a dataset (Fig. 6). 

Additionally, unlike the clustering approach, acoustic area estimates were robust to large 

repertoire sizes. We suggest that this may be a useful technique for quantifying diversity 

in species anticipated to have large repertoires, high element diversity, or those in which 

vocalizations may change over time (e.g. budgerigars, Dahlin et al. 2014), as it precludes 

the need for defining discrete categories which may be difficult to define statistically in 

a crowded acoustic space. We note, however, that making relative comparisons between 

different datasets requires that all data points are analyzed concurrently; acoustic area is 

defined by its composite data points and has no inherent comparability between different 

data sets.

Potential Uses

Both methods we tested allowed for accurate estimates of repertoire size, however, we see 

promising attributes and limitations of both approaches. We observed that cluster analysis 

was particularly useful for assessing small or intermediate repertoire sizes. Interestingly, 

previous work has shown that parrot repertoires often contain 10–15 elements (Bradbury 

2003) and that most songbird repertoires typically include below 20 elements or song types 

(MacDougall-Shackelton 1997, Byers and Kroodsma 2009, Snyder and Creanza 2018). 

Repertoires can refer both to total signal repertoire in a species (signal ethogram) and total 

number of signals of a certain type within an individual (song repertoire or call repertoire). 

We foresee clustering of signals as being especially useful in this case.

We envision that acoustic space is an especially promising method to estimate and 

compare acoustic diversity across individuals, populations, or species. Previous work has 

shown that acoustic diversity may correspond to a number of ecological characteristics, 

including viability of populations (Lailo et al. 2008), local habitat structure (Morton 

1975, Boncoraglio and Saino 2007), social system structure and complexity (Dunbar 1998, 

Freeburg 2006, elephants, Leighton 2017), and is also linked to social and sexual signaling 

(Tobias and Seddon 2009, Wilkins et al. 2013). Our acoustic space approach is well 

suited for large comparative analyses, particularly in cases in which repertoire sizes are 

unknown or anticipated to be large, and therefore cluster analysis may not be appropriate. 

In addition, all species or individuals can be compared in the same acoustic space, allowing 

for comparable estimates of acoustic area for all species. Although the analyses presented 

here were conducted in a two-dimensional acoustic space, future analyses could calculate 

multi-dimensional acoustic volumes (as opposed to 2-D acoustic areas).

New algorithms such as UMAP and other data visualization procedures may improve 

classification for grouping elements into distinct clusters in a two-dimensional feature 

space (Sainburg et al. 2019, Goffinet et al. 2019). Therefore, such approaches may enable 

researchers to more accurately determine the numbers of unique elements within an animal’s 

repertoire based on spatial separation. However, similar to our cluster analysis findings, 
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these methods could still be limited by the number of groupings that can be delineated 

in a two-dimensional space and thus may be more appropriate for small sample sizes. In 

general, the challenge of assigning signals to categories is expected to scale in difficulty 

as the number of classes increase and the acoustic space becomes saturated. This inherent 

challenge cannot be entirely avoided, but certain aspects of our acoustic area technique 

help to mitigate this issue, namely by comparing how entire repertoires occupy acoustic 

space as an estimate of repertoire size rather than counting or comparing numbers of 

discrete groupings to calculate the actual repertoire size. Acoustic space may not linearly 

correlate with the number of discrete elements in a dataset, but we can use this approach 

to capture differences between large versus small repertoires across species, populations, 

or individuals. Researchers should be careful if the intent is to compare the size, location, 

distance, or overlap of element groupings derived from UMAP and other data visualization 

procedures as these techniques focus on maximizing local separation. Therefore, global 

structure can be lost and broad spatial comparisons might not be accurate.

The feature measurements that were most useful in the unsupervised random forest 

approach varied among test datasets, presumably because different signal types were best 

distinguished by different features (Table S1). For most datasets, the MFCC descriptive 

statistics were consistently among the most important features for creating supervised 

random forest models. Interestingly, for the lab-recorded budgerigar calls, the SPCC 

MDS coordinates were among the highest-ranking features. We expect that because these 

recordings were collected in a controlled environment with little background noise that the 

SPCC analysis could detect small differences among call types that were not visible in the 

synthetic or field recorded data. The ability for the analysis to detect this latent variation 

without requiring us to specify a priori which features we expected to vary exemplifies one 

of the primary strengths of random forest analysis. For this reason alone, we expect this 

approach may permit a high degree of adaptability to diverse acoustic datasets. The ability 

of this method to accurately evaluate acoustic diversity among disparate signal types also 

suggests that this method can be readily applied to vocalizations from other species or taxa. 

Overall, given the relatively low out-of-bag error rates, we were confident that constructing 

random forest models in an unsupervised manner would be a useful tool for assessing 

acoustic diversity.

Conclusions

We build upon previous work that has demonstrated the utility of unsupervised analyses for 

classifying acoustic signals and propose a novel combination of techniques for quantifying 

vocal diversity and/or measuring differences among individuals, species, and ecosystems. 

This method can be used to characterize vocalizations, either by estimating repertoire size 

or calculating acoustic space occupancy. By testing this method under diverse conditions, 

we hope to offer researchers a robust and generalizable method for acoustic analyses. Most 

importantly, we include R code to make these tools accessible to biologists.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flowchart of study design. White boxes represent data analysis steps and shaded boxes 

represent evaluation and validation steps.
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Figure 2. Spectrograms with examples from each dataset.
Example spectrograms showing signals in the four datasets used to test algorithm 

performance, including a) field recordings of long billed hermit songs, b) laboratory 

recordings of budgerigar songs, c) synthetic long billed hermit songs with added noise, 

and d) synthetic budgerigar songs with added noise.
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Figure 3. 
Out-of-bag error rates for supervised random forest models created for synthetic datasets 

with varying a) duration, b) harmonic content, c) levels of background noise. Black violin 

plots show results for synthetic budgerigar and gray plots results for synthetic long billed 

hermit datasets.
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Figure 4. Unsupervised performance varies with number of unique elements in synthetic 
datasets.
Plots of results from cluster analysis of unsupervised random forest output showing a) 

estimated repertoire size, b) classification accuracy, c) adjusted Rand index versus true 

repertoire size. White and black boxes represent results from synthetic budgerigar calls and 

synthetic long billed hermit songs, respectively.
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Figure 5. Examples of unsupervised clustering of elements within datasets.
To illustrate the ability of our method to cluster similar element types together within 

datasets of different sizes and with different signal properties, we show plots of six datasets 

used in this study: a) synthetic budgerigar calls with 20 unique elements, short duration, 

low harmonic content, and low background noise (clustered into 20 groups), b) synthetic 

long-billed hermit dataset with 20 unique elements, short duration, high harmonic content, 

and low background noise (clustered into 20 groups), c) synthetic budgerigar dataset with 50 

unique elements, long duration, low harmonic content, and low background noise (clustered 
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into 46 groups), d) synthetic long billed hermit dataset with 50 unique elements, short 

duration, high harmonic content, and low background noise (clustered into 47 groups), e) 

live budgerigar dataset with 15 unique elements (clustered into 15 groups), f) live long billed 

hermit dataset with 50 unique elements (clustered into 75 groups). We used t-SNE to display 

all data points in two dimensions, thus creating a two-dimensional acoustic space. Each 

point represents a single signal within a dataset, and the unique colors and shapes of points 

indicate the distinct element types within a dataset. Ellipses represent clusters assigned by 

the algorithm as it aimed to group identical element types together. In some cases, ellipses 

are too small to be visible within plots.
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Figure 6. Datasets with more discrete elements have larger distributions in acoustic space.
As repertoire size increases, the distribution of samples in acoustic space occupies a larger 

area for a) synthetic budgerigar calls, b) synthetic long-billed hermit songs. Acoustic space 

values have been squared to better illustrate differences between values on a small scale.
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Table 1.

Summary of test datasets used to evaluate performance.

Description Recording type Number of datasets Unique elements in repertoire Examples of each 
element

Long billed hermit songs Field 1 50 10

Budgerigar calls Laboratory 1 15 35

Synthetic long- billed hermit songs Synthetic 48

8 × 5

10

8 × 10

8 × 15

8 × 20

8 × 50

8 × 100

Synthetic budgerigar calls Synthetic 48

8 × 5

10

8 × 10

8 × 15

8 × 20

8 × 50

8 × 100
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